【題目】如圖1,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第四象限內(nèi)作等邊△AOB,點C為x軸的正半軸上一動點(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點E.
(1)試問△OBC與△ABD全等嗎?并證明你的結論;
(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標;若有變化,請說明理由;
(3)如圖2,以OC為直徑作圓,與直線DE分別交于點F、G,設AC=m,AF=n,用含n的代數(shù)式表示m
【答案】(1)兩個三角形全等,理由見解析;(2)見解析;(3)m=.
【解析】
(1)由等邊三角形的性質知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;
(2)由1知,△OBC≌△ABD∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA中,有EO=OAtan60°=,即可求得點E的坐標;
(3)由相交弦定理知1m=nAG,即AG=,由切割線定理知,OE2=EGEF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2-)(2+n),就可求得m與n關系.
(1)兩個三角形全等.
∵△AOB、△CBD都是等邊三角形,
∴OBA=∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD;
∵OB=AB,BC=BD,
△OBC≌△ABD;
(2)點E位置不變.
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∠OAE=180°﹣60°﹣60°=60°,
在Rt△EOA中,EO=OAtan60°=,
或∠AEO=30°,得AE=2,
∴OE=,
∴點E的坐標為(0,);
(3)∵AC=m,AF=n,由相交弦定理知1m=nAG,即AG=,
又∵OC是直徑,
∴OE是圓的切線,OE2=EGEF,
在Rt△EOA中,AE==2,
()2=(2﹣)(2+n)
即2n2+n﹣2m﹣mn=0
解得m=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD,點P為射線DC上的一個動點,點Q為AB的中點,連接PQ,DQ,過點P作PE⊥DQ于點E.
(1)請找出圖中一對相似三角形,并證明;
(2)若AB=4,以點P,E,Q為頂點的三角形與△ADQ相似,試求出DP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廣場有一個小型噴泉,水流從垂直于地面長為1.25米的水管OA噴出,水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點B到O的距離為2.5米.建立如圖直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間的關系式是y=ax2+2x+c,請回答下列問題:
(1)求y與x之間的函數(shù)表達式;
(2)求水流的最大高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,CD⊥AB于點D,∠A=30°,以下說法錯誤的是( 。
A. AC=2CDB. AD=2CDC. AD=3BDD. AB=2BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:到一個三角形三個頂點的距離相等的點叫做該三角形的外心.
(1)如圖①,小海同學在作△ABC的外心時,只作出兩邊BC,AC的垂直平分線得到交點O,就認定點O是△ABC的外心,你覺得有道理嗎?為什么?
(2)如圖②,在等邊三角形ABC的三邊上,分別取點D,E,F,使AD=BE=CF,連接DE,EF,DF,得到△DEF.若點O為△ABC的外心,求證:點O也是△DEF的外心.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點D作DE⊥AD交AB于點E,以AE為直徑作⊙O
(1)求證:點D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH中點,連接AE并延長交BD于點F,直線CF交直線AB于點G.
(1)求證:點F是BD中點;
(2)求證:CG是⊙O的切線;
(3)若FB=FE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=30,高AD=18,作矩形PQRS,使得P,S分別落在AB,AC邊上,Q,R落在BC邊上.
(1)求證:△APS ∽△ABC;
(2)如果矩形PQRS是正方形,求它的邊長;
(3)如果AP∶PB=1∶2,求矩形PQRS的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點E作EF∥BC,分別交BD,CD于點G,F兩點,若M,N分別是DG,CE的中點,則MN的長是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com