精英家教網 > 初中數學 > 題目詳情
(2003•汕頭)已知角A是銳角,且tanA、cotA是關于x的一元二次方程x2+2kx+k2-3=0的兩個實數根.
(1)求k的值;
(2)問:角A能否等于45°?請說明你的理由.
【答案】分析:(1)根據tanA•cotA=1和根與系數的關系x1•x2=,列出關于k的方程求解,注意角A是銳角,所以tanA>0,cotA>0,
所以x1+x2=<0,然后可以確定k的值;
(2)若A=45°,則tanA=cotA=1,即方程的解是x=1,代入方程x2-4x+4-3=0的左右兩邊不相等,即1不是方程的解,說明A不能取45°.
解答:解:(1)依題意得tanA•cotA=k2-3,
即1=k2-3,k2=4,
∴k=±2.
由∠A是銳角知tanA>0,cotA>0.
∴2k=-(tanA+cotA)<0,
即k<0,
∴k=-2,
此時方程的根的判別式△=(-4)2-4[(-2)2-3]=12>0,
所以方程有實數根,
∴k=-2;

(2)若A=45°,則tanA=cotA=1,
將x=1代入方程x2-4x+4-3=0,
左邊=1-4+1=-4≠0
∴1不是方程的根,
∴A不能取45°.
點評:本題考查一元二次方程根與系數的關系及根的判別式.
練習冊系列答案
相關習題

科目:初中數學 來源:2003年全國中考數學試題匯編《二次函數》(04)(解析版) 題型:解答題

(2003•汕頭)已知拋物線y=-x2+(m+3)x-(m-1).
(1)求拋物線的頂點坐標(用m表示);
(2)設拋物線與x軸的兩個交點為A(x1,0)、B(x2,0),與y軸交點為C,若∠ABC=∠BAC,求m的值;
(3)在(2)的條件下,設Q為拋物線上的一點,它的橫坐標為1,試問在拋物線上能否找到另一點P,使PC⊥QC?若點P存在,求點P的坐標;若點P不存在,請說出理由.(請在右方直角坐標系中作出大致圖形)

查看答案和解析>>

科目:初中數學 來源:2003年廣東省汕頭市中考數學試卷(解析版) 題型:解答題

(2003•汕頭)已知拋物線y=-x2+(m+3)x-(m-1).
(1)求拋物線的頂點坐標(用m表示);
(2)設拋物線與x軸的兩個交點為A(x1,0)、B(x2,0),與y軸交點為C,若∠ABC=∠BAC,求m的值;
(3)在(2)的條件下,設Q為拋物線上的一點,它的橫坐標為1,試問在拋物線上能否找到另一點P,使PC⊥QC?若點P存在,求點P的坐標;若點P不存在,請說出理由.(請在右方直角坐標系中作出大致圖形)

查看答案和解析>>

科目:初中數學 來源:2011年河北省承德市承德縣中考數學模擬試卷(二)(解析版) 題型:填空題

(2003•汕頭)已知函數,自變量x的取值范圍是   

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《圓》(08)(解析版) 題型:填空題

(2003•汕頭)已知⊙O1與⊙O2相切,⊙O1的半徑為5cm,圓心距O1O2=3cm,則⊙O2的半徑是   

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《反比例函數》(01)(解析版) 題型:選擇題

(2003•汕頭)已知反比例函數的圖象如圖,則y=kx-2的圖象為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案