【題目】如圖,點O為Rt△ABC斜邊AB上一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).
【答案】(1)證明見解析(2)
【解析】
試題分析:(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易證得AC∥OD,繼而證得AD平分∠CAB.
(2)如圖,連接ED,根據(jù)(1)中AC∥OD和菱形的判定與性質得到四邊形AEDO是菱形,則△AEM≌△DMO,則圖中陰影部分的面積=扇形EOD的面積.
試題解析:(1)∵⊙O切BC于D,
∴OD⊥BC,
∵AC⊥BC,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠CAD,
即AD平分∠CAB;
(2)設EO與AD交于點M,連接ED.
∵∠BAC=60°,OA=OE,
∴△AEO是等邊三角形,
∴AE=OA,∠AOE=60°,
∴AE=AO=OD,
又由(1)知,AC∥OD即AE∥OD,
∴四邊形AEDO是菱形,則△AEM≌△DMO,∠EOD=60°,
∴,
∴=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠D=30°,
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,求的長.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是( )
A. 經(jīng)過三個點一定可以作圓
B. 三角形的外心到三角形各頂點的距離相等
C. 同圓或等圓中,相等的圓心角所對的弧相等
D. 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】、如圖,把一個長方形紙片對折兩次,然后剪下一個角,為了得到一個正方形,剪刀與折痕所成的角的度數(shù)應為……( )
A. 60° B. 30° C. 45° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C為⊙O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若直線l與AB的延長線相交于點E,⊙O的半徑為3,并且∠CAB=30°.求圖中所示陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC與BD相交于點O,AC=12,BD=10,AB=m,那么m的取值范圍是( 。
A. 5<m<6B. 1<m<11C. 10<m<12D. 10<m<22
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com