精英家教網 > 初中數學 > 題目詳情
已知二次函數y=
12
x2+bx+c的圖象經過點A(c,-2),精英家教網,求證:這個二次函數圖象的對稱軸是x=3.
題目中的矩形框部分是一段墨水污染了無法辨認的文字.
(1)根據已知和結論中現有的信息,你能否求出題中的二次函數解析式?若能,請寫出求解過程;若不能,請說明理由;
(2)請你根據已有的信息,在原題中的矩形框中,填加一個適當的條件,把原題補充完整.
分析:(1)先根據對稱軸公式求出b的值是3,再把點A的坐標代入解析式中得到關于c的一元二次方程,解該方程即可求出c的值,從而求得二次函數的解析式;
(2)根據(1)中所求的函數解析式可寫出圖象上另一個點的坐標,答案不唯一.如:x=0時,y=2,補充為:點B(0,2).
解答:解:(1)能.
由結論中的對稱軸x=3,得-
b
2×(
1
2
)
=3
,則b=-3
又因圖象經過點A(C,-2),
則:
1
2
c2-3c+c=-2

c2-4c+4=0
(c-2)2=0
∴c1=c2=2
∴c=2
∴二次函數解析式為y=
1
2
x2-3x+2


(2)補:點B(0,2)(答案不唯一).
點評:主要考查了用待定系數法求二次函數解析式.要熟練掌握對稱軸公式x=-
b
2a
,并會靈活運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在平面直角坐標系xOy中,已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,其頂點的橫坐標為1,且過點(2,3)和(-3,-12).
(1)求此二次函數的表達式;
(2)若直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出該直線的函數表達式及點D的坐標;若不存在,請說明理由;
(3)若點P是位于該二次函數對稱軸右邊圖象上不與頂點重合的任意一點,試比較精英家教網銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出此時點P的橫坐標xp的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=x2+px+q(p,q為常數,△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點,且A,B兩點間的距離為d,例如,通過研究其中一個函數y=x2-5x+6及圖象(如圖),可得出表中第2行的相關數據.
(1)在表內的空格中填上正確的數;
(2)根據上述表內d與△的值,猜想它們之間有什么關系?再舉一個符合條件的二次函數,驗證你的猜想;
(3)對于函數y=x2+px+q(p,q為常數,△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一精英家教網種不同于(3)的正確證明嗎?我們將對你的出色表現另外獎勵3分.
y=x2+px+q  x1 x2 
y=x2-5x+6  -5  6  1  1
y=x2-
1
2
-
1
2
 
   
1
4
   
1
2
 
y=x2+x-2    -2   -2    3

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=-
1
2
(x-
3
2
)2+
25
8
的圖象在坐標原點為O的直角坐標系中,
(1)設這個二次函數的圖象與x軸的交點是A、B(B在點A右邊),與y軸的交點是C,求A、B、C的坐標;
(2)求證:△OAC∽△OCB.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示對稱軸為x=-
12
.下列結論中:
①abc>0;②a+b=0;③2b+c>0;④4a+c<2b.
正確的有
(只要求填寫正確命題的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2的圖象經過點A(
1
2
,
1
8
)、B(3,m).
(1)求a與m的值;    
(2)當-2<x<4時,函數值y的取值范圍.
(3)寫出將其圖象向下平移4個單位、再向左平移2個單位后的解析式.

查看答案和解析>>

同步練習冊答案