如圖,以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,1),直線x=1交x軸于點(diǎn)B.P為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交直線x=1于點(diǎn)C.過(guò)P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=1于點(diǎn)N.
(1)當(dāng)點(diǎn)C在第一象限時(shí),求證:△OPM≌△PCN;
(2)當(dāng)點(diǎn)C在第一象限時(shí),設(shè)AP長(zhǎng)為m,四邊形POBC的面積為S,請(qǐng)求出S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=1上移動(dòng),△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點(diǎn)P的坐標(biāo);如果不可能,請(qǐng)說(shuō)明理由.
(1)證明:∵OMBN,MNOB,∠AOB=90°
∴四邊形OBNM為矩形
∴MN=OB=1,∠PMO=∠CNP=90°
∵OA=OB,
∴∠1=∠3=45°
∵M(jìn)NOB,
∴∠2=∠3=45°
∴∠1=∠2=45°,
∴AM=PM
∴OM=OA-AM=1-AM,PN=MN-PM=1-PM
∴OM=PN
∵∠OPC=90°,
∴∠4+∠5=90°,
又∵∠4+∠6=90°,
∴∠5=∠6
∴△OPM≌△PCN

(2)∵AM=PM=APsin45°=
2
2
m
,
∴OM=1-
2
2
m

∴S=S矩形OBNM-2S△POM=(1-
2
2
m)-2×
1
2
(1-
2
2
m)•
2
2
m
=
1
2
m2-
2
m+1(0≤m<
2
2
).

(3)△PBC可能成為等腰三角形
①當(dāng)P與A重合時(shí),PC=BC=1,此時(shí)P(0,1)
②當(dāng)點(diǎn)C在第四象限,且PB=CB時(shí)
有BN=PN=1-
2
2
m

∴BC=PB=
2
PN=
2
-m

∴NC=BN+BC=1-
2
2
m
+
2
-m
由(2)知:NC=PM=
2
2
m

∴1-
2
2
m
+
2
-m=
2
2
m

整理得(
2
+1)m=
2
+1
∴m=1
∴PM=
2
2
m
=
2
2
,BN=1-
2
2
m
=1-
2
2

∴P(
2
2
,1-
2
2

由題意可知PC=PB不成立
∴使△PBC為等腰三角形的點(diǎn)P的坐標(biāo)為(0,1)或(
2
2
,1-
2
2
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD中,ABCD,ADBC.求證:△ABD≌△CDB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,ADBC,∠B=∠D.求證:△ADC≌△CBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,梯形ABCD中,ABDC,AD=DC=CB,AD、BC的延長(zhǎng)線相交于G,CE⊥AG于E,CF⊥AB于F,則圖中共有全等三角形( 。
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC與△DEF中,下列各組條件中,不能判定兩個(gè)三角形全等的是(  )
A.AB=DE,∠B=∠E,∠C=∠FB.AB=EF,∠A=∠E∠B=∠F
C.AC=DF,BC=DE,∠C=∠DD.∠A=∠F,∠B=∠E,AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖.點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE.請(qǐng)寫(xiě)出圖中的全等三角形______(寫(xiě)出一對(duì)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,補(bǔ)充條件后仍不一定能保證△ABC≌△A′B′C′,則補(bǔ)充的這個(gè)條件是( 。
A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的有(  )
①全等三角形的周長(zhǎng)相等;
②面積相等的兩個(gè)三角形全等;
③形狀、大小都相同的圖形一定是全等圖形.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(1,1)、B(1,-1)、C(-1,-1)、D(-1,1),y軸上有一點(diǎn)P(0,2).作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P1,作P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P2,作點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)P3,作P3關(guān)于點(diǎn)D的對(duì)稱點(diǎn)P4,作點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5,作P5關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P6┅,按如此操作下去,則點(diǎn)P2011的坐標(biāo)為( 。
A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案