在平面直角坐標(biāo)系中,點(diǎn),,,…和,,,…分別在直線和軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么點(diǎn)的縱坐標(biāo)是_ _____.
.
解析試題分析:利用待定系數(shù)法求一次函數(shù)解析式求出直線的解析式,再求出直線與x軸、y軸的交點(diǎn)坐標(biāo),求出直線與x軸的夾角的正切值,分別過等腰直角三角形的直角頂點(diǎn)向x軸作垂線,然后根據(jù)等腰直角三角形斜邊上的高線與中線重合并且等于斜邊的一半,利用正切值列式依次求出三角形的斜邊上的高線,即可得到各點(diǎn)的縱坐標(biāo)的規(guī)律.
試題解析:如圖:
∵A1(1,1),A2(,)在直線y=kx+b上,
∴,
解得.
∴直線解析式為,
如圖,設(shè)直線與x軸、y軸的交點(diǎn)坐標(biāo)分別為N、M,
當(dāng)x=0時,y=,
當(dāng)y=0時,,解得x=-4,
∴點(diǎn)M、N的坐標(biāo)分別為M(0,),N(-4,0),
∴tan∠MNO=,
作A1C1⊥x軸與點(diǎn)C1,A2C2⊥x軸與點(diǎn)C2,A3C3⊥x軸與點(diǎn)C3,
∵A1(1,1),A2(,),
∴OB2=OB1+B1B2=2×1+2×=2+3=5,
tan∠MNO=,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3=,
同理可求,第四個等腰直角三角形A4C4=,
依此類推,點(diǎn)An的縱坐標(biāo)是.
考點(diǎn):一次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:新人教版(2012) 七年級上 題型:
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
一次函數(shù)的圖象過點(diǎn)(0,1),且函數(shù)y的值隨自變量x的增大而減小,請寫出一個符合條件的函數(shù)解析式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
新定義:[a,b,c]為函數(shù)y=ax2+bx+c (a,b,c為實(shí)數(shù))的“關(guān)聯(lián)數(shù)”.若“關(guān)聯(lián)數(shù)”為[m-2,m,1]的函數(shù)為一次函數(shù),則m的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
(2013年四川南充3分) 如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC 運(yùn)動到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動到點(diǎn)C停止,它們運(yùn)動的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個數(shù)為【 】
A.4 | B.3 | C.2 | D.1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com