已知⊙P的圓心坐標(biāo)為(1.5,0),半徑為2.5,⊙P與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)D.
(1)求D點(diǎn)的坐標(biāo);
(2)求過(guò)A、B、D三點(diǎn)的拋物線(xiàn)的解析式;
(3)設(shè)平行于x軸的直線(xiàn)交此拋物線(xiàn)于E、F兩點(diǎn),問(wèn):是否存在以線(xiàn)段EF為直徑的圓O'恰好與⊙P相外切?若存在,求出其半徑r及圓心O'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)由已知,得OA=1,OB=4,
∴OD2=OA•OB=1×4,OD=2
∴D點(diǎn)的坐標(biāo)為(0,-2);

(2)設(shè)過(guò)A、B、D三點(diǎn)多拋物線(xiàn)解析式為y=ax2+bx+c,把A(-1,0)、B(0,-2)的坐標(biāo)代入解析式,得:
a-b+c=0
16a+4b+c=0
c=-2

a=
1
2
b=
3
2
c=-2

∴過(guò)點(diǎn)A、B、D三點(diǎn)多拋物線(xiàn)的解析式為y=
1
2
x2-
3
2
x-2;

(3)存在.配方y(tǒng)=
1
2
x2-
3
2
x-2=
1
2
(x-
3
2
2-
25
8

拋物線(xiàn)的對(duì)稱(chēng)軸為x=
3
2
,圓心O’應(yīng)在對(duì)稱(chēng)軸上.分兩種情況:
①當(dāng)以線(xiàn)段EF為直徑的圓O′在x軸上方時(shí),F(xiàn)(
3
2
+r,
5
2
+r)在拋物線(xiàn)y=
1
2
x2-
3
2
x-2上,
5
2
+r=
1
2
3
2
+r)2-
3
2
3
2
+r)-2,
整理得4r2-8r-45=0,
解得r=
9
2
或r=-
5
2
(舍去)
∴半徑r=
9
2
.圓心O′(
3
2
,7);
②當(dāng)以線(xiàn)段EF為直徑的圓O′在x軸下方時(shí):F(
3
2
+r,-
5
2
-r)在拋物線(xiàn)y=
1
2
x2-
3
2
x-2上,
∴-
5
2
-r=
1
2
3
2
+r)2-
3
2
3
2
+r)-2,
整理得4r2+8r-5=0,
解得r=
1
2
或r=-
5
2
(舍去)
∴半徑r=
1
2
,圓心O′(
3
2
,-3
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,OABC是邊長(zhǎng)為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線(xiàn)y=ax2(a<0)的圖象上,則a的值為( 。
A.-
2
3
B.-
2
3
C.-2D.-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,小李推鉛球,如果鉛球運(yùn)行時(shí)離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式y=-
1
8
x2+
1
2
x+
3
2
,那么鉛球運(yùn)動(dòng)過(guò)程中最高點(diǎn)離地面的距離為_(kāi)_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),將直線(xiàn)y=kx沿y軸向上平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B,C兩點(diǎn).
(1)求直線(xiàn)BC及拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知直線(xiàn)y=
2
5
x+2與x軸交于點(diǎn)A,交y軸于C、拋物線(xiàn)y=ax2+4ax+b經(jīng)過(guò)A、C兩點(diǎn),拋物線(xiàn)交x軸于另一點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)Q在拋物線(xiàn)上,且有△AQC和△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,點(diǎn)P為△AOC外接圓上
ACO
的中點(diǎn),直線(xiàn)PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時(shí),DE交AC于M,DF交y軸負(fù)半軸于N、問(wèn)CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示是一個(gè)拋物線(xiàn)形橋拱的示意圖,在所給出的平面直角坐標(biāo)系中,當(dāng)水位在AB位置時(shí),水面寬度為10m,此時(shí)水面到橋拱的距離是4m,則拋物線(xiàn)的函數(shù)關(guān)系式為( 。
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)有一開(kāi)口向下的拋物線(xiàn)y=a(x-h)2+k經(jīng)過(guò)點(diǎn)A,B,且其頂點(diǎn)在⊙C上.試確定此拋物線(xiàn)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點(diǎn)M從點(diǎn)B開(kāi)始,以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng);點(diǎn)N從點(diǎn)D開(kāi)始,沿D→A→B方向,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng).若點(diǎn)M、N同時(shí)開(kāi)始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0).過(guò)點(diǎn)N作NP⊥BC與P,交BD于點(diǎn)Q.
(1)點(diǎn)D到BC的距離為_(kāi)_____;
(2)求出t為何值時(shí),QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時(shí),△BMQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時(shí)AB、BC、CD、DA上的點(diǎn),且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當(dāng)四邊形ABCD為正方形時(shí),
①求S關(guān)于x的函數(shù)解析式,并求S的最小值S0;
②在圖②中畫(huà)出①中函數(shù)的草圖,并估計(jì)S=0.6時(shí)x的近似值(精確到0.01);
(2)如圖③,當(dāng)四邊形ABCD為菱形,且∠A=30°時(shí),四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案