【題目】平面直角坐標系中,點A是軸正半軸上一個定點,點P是函數(shù)>0)上一個動點,PB⊥軸于點B,連結PA,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會(  )

A. 逐漸增大 B. 先增后減 C. 逐漸減小 D. 先減后增

【答案】C

【解析】根據(jù)題意畫出圖形,設出點P的坐標,得到PB、OB的長,然后根據(jù)梯形的面積得到四邊形AOPB的面積關系,根據(jù)OA是定值和函數(shù)的關系得解.

根據(jù)題意畫出圖形為:

設點P的坐標為(x,),

∴PB=x,OB=

∴四邊形AOPB的面積=×(PB+OA)×OB=×PB×OB+×OA×OB=2+

∵AO是定值,

∴四邊形OAPB的面積是個減函數(shù),即點P的橫坐標逐漸增大時四邊形OAPB的面積逐漸減。

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃在總費用2300元的限額內(nèi)租用客車送234名學生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

乙種客車

載客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少輛客車?

(2)請給出最節(jié)省費用的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設點P的運動時間為t(秒).

(1)求點B的坐標,并用含t的代數(shù)式表示OP,OQ;

(2)當t=1時,如圖1,將△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;

(3)在(2)的條件下,矩形對角線AC,BO交于M,取OM中點G,BM中點H,求證:當t=1時四邊形DGPH是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與兩坐標軸相交于點是拋物線的頂點, 是線段的中點.

(1)求拋物線的解析式,并寫出點的坐標;

(2) 是拋物線上的動點;

①當時,求的面積的最大值;

②當時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點ECD上,點FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的

5個主題進行了抽樣調(diào)查(每位同學只選取最關注的一個),根據(jù)調(diào)查結果繪制了兩幅不完

整的統(tǒng)計圖,根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學生共有多少名?

(2)請將條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中“進取”部分扇形的圓心角是   度;

(4)若該校學生人數(shù)為800人,請根據(jù)上述調(diào)查結果,估計該校學生中“感恩”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線交于C,D兩點,其中點Cy軸上,點D的坐標為。點Py軸右側的拋物線上一動點,過點PPEx軸于點E,交CD于點F.

1)求拋物線的解析式;

2)若點P的橫坐標為m,當m為何值時,以OC,P,F為頂點的四邊形是平行四邊形?請說明理由;

3)若存在點P,使PCF=450,請直接寫出相應的點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CDABDFGABG,EDBC,求證∠1=∠2.以下是推理過程,請你填空:

解:∵CDABFGAB

∴∠CDB=∠FGB90° 垂直定義)

   FG   

   =∠3    

又∵DEBC 已知

∴∠   =∠3 兩直線平行,內(nèi)錯角相等

∴∠1=∠2    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為4,點是對角線的中點,點、分別在、邊上運動,且保持,連接,.在此運動過程中,下列結論:①;②;③四邊形的面積保持不變;④當時,,其中正確的結論是(

A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

同步練習冊答案