(2012•楊浦區(qū)二模)如圖,已知:正方形ABCD中,AB=8,點(diǎn)O為邊AB上一動(dòng)點(diǎn),以點(diǎn)O為圓心,OB為半徑的⊙O交邊AD于點(diǎn)E(不與點(diǎn)A、D重合),EF⊥OE交邊CD于點(diǎn)F.設(shè)BO=x,AE=y.

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(2)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,△EFD的周長(zhǎng)是否發(fā)生變化?如果發(fā)生變化,請(qǐng)用x的代數(shù)式表示△EFD的周長(zhǎng);如果不變化,請(qǐng)求出△EFD的周長(zhǎng);
(3)以點(diǎn)A為圓心,OA為半徑作圓,在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,討論⊙O與⊙A的位置關(guān)系,并寫(xiě)出相應(yīng)的x的取值范圍.
分析:(1)OB、OE均是⊙O的半徑,得出OB=OE,然后在RT△AOE中,運(yùn)用勾股定理可得出y與x的關(guān)系式,結(jié)合二次根式有意義的條件,可得出x的范圍;
(2)先判斷△AOE∽△DEF,然后根據(jù)相似三角形的周長(zhǎng)之比等于相似比,可得出△DEF周長(zhǎng)的表達(dá)式,進(jìn)一步化簡(jiǎn)可得出答案;
(3)設(shè)⊙O的半徑R1=x,則⊙A的半徑R2=8-x,圓心距d=OA=8-x,分三種情況討論,依此解出x的范圍即可.
解答:解:(1)∵以點(diǎn)O為圓心,OB為半徑的⊙O交邊AD于點(diǎn)E,
∴OB=OE,
∵四邊形ABCD是正方形,
∴∠A=90°,
∴AO2+AE2=OE2,即(8-x)2+y2=x2,
∵y>0,
∴y=4
x-4
(4<x<8);

(2)△EFD的周長(zhǎng)不變.理由如下:
∵EF⊥OE,
∴∠AEO+∠DEF=90°,
∵∠D=∠A=90°,
∴∠AEO+∠AOE=90°,
∴∠DEF=∠AOE,
∴△AOE∽△DEF,
C△AOE
C△DEF
=
AO
ED
,即
8+y
C△DEF
=
8-x
8-y
,
∴C△DEF=
64-y2
8-x
=
64-16x+64
8-x
=
16(8-x)
8-x
=16;

(3)設(shè)⊙O的半徑R1=x,則⊙A的半徑R2=8-x,圓心距d=OA=8-x,
∵4<x<8,
∴R1>R2,
因?yàn)辄c(diǎn)A始終在⊙O內(nèi),所以外離和外切都不可能;
①當(dāng)⊙O與⊙A相交時(shí),R1-R2<d<R1+R2,即x-8+x<8-x<x+8-x,
解得:0<x<
16
3

故可得此時(shí):4<x<
16
3
;
②當(dāng)⊙O與⊙A內(nèi)切時(shí),d=R1-R2,即8-x=x-8+x,
解得:x=
16
3
;
③當(dāng)⊙O與⊙A內(nèi)含時(shí),0<d<R1-R2,即0<8-x<x-8+x,
解得:
16
3
<x<8.
點(diǎn)評(píng):此題屬于圓的綜合題目,涉及了圓與圓的位置關(guān)系判斷、正方形的性質(zhì)、相似三角形的判定與性質(zhì),整體難度較大,其實(shí)第二問(wèn)和第三問(wèn)是獨(dú)立的,分別考查不同的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)二模)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:
①以點(diǎn)O為原點(diǎn)、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;
②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:
①寫(xiě)出點(diǎn)的坐標(biāo):C
(6,2)
(6,2)
、D
D(2,0)
D(2,0)
;
②⊙D的半徑=
2
5
2
5
;
(3)求∠ACO的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)二模)已知拋物線y=ax2-x-c過(guò)點(diǎn)A(-6,0),與y軸交于點(diǎn)B,頂點(diǎn)為D,對(duì)稱(chēng)軸是直線x=-2.
(1)求此拋物線的表達(dá)式及點(diǎn)D的坐標(biāo);
(2)連接DO,求證:∠AOD=∠ABO;
(3)點(diǎn)P在y軸上,且△ADP與△AOB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)二模)若點(diǎn)M(x-1,3-x)在第二象限,則x的取值范圍是
x<1
x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)二模)下列二次根式中,屬于最簡(jiǎn)二次根式的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)二模)如果一次函數(shù)y=kx+b的圖象與直線y=2x平行,且過(guò)點(diǎn)(-3,5),那么該一次函數(shù)解析式為
y=2x+11
y=2x+11

查看答案和解析>>

同步練習(xí)冊(cè)答案