【題目】如圖,AB是⊙O的直徑,AC是切⊙O于A的切線,BC交⊙O于點D,E是劣弧 的中點,連接AE交BC于點F,若cosC= ,AC=6,則BF的長為

【答案】3
【解析】解:連接AD,作FH⊥AB于H,如圖,
∵AB是⊙O的直徑,
∴∠ADB=∠ADC=90°,
∴△ADC是直角三角形,
在Rt△ACD中,∵cosC= = ,
∴CD= ×6=4,
∵AC是切⊙O于A的切線,
∴AC⊥AB,
∴△CAB是直角三角形
在Rt△ACB中,∵cosC= = ,
∴BC= ×6=9,
∴BD=BC﹣CD=9﹣4=5,
∵∠EAB=∠EAD,即AF平分∠BAD,
而FD⊥AD,F(xiàn)H⊥AB,
∴FD=FH,
設BF=x,則DF=FH=5﹣x,
∵FH∥AC,
∴∠HFB=∠C,
在Rt△BFH中,∵cos∠BFH=cosC= = ,
=
解得x=3,
即BF的長為3.
所以答案是:3.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑,以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,∠ACB=ECD=90°,點DAB邊上一點.

(1)求證:AD2+DB2=ED2;

(2)若BC=,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(感知)如圖①,ABCD,點E在直線ABCD之間,連結AE、BE,試說明∠BEE+DCE=AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學式):

解:如圖①,過點EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+FGC+DCE=360°;

(應用)點E、F、G在直線ABCD之間,連結AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳市地鐵9號線梅林段的一項綠化工程由甲、乙兩工程隊承擔,已知乙工程隊單獨完成這項工程所需的天數(shù)是甲工程隊單獨完成所需天數(shù)的 ,甲工程隊單獨工作30天后,乙工程隊參與合做,兩隊又共同工作了36天完成.
(1)求乙工程隊單獨完成這項工作需要多少天?
(2)因工期的需要,將此項工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊各做了多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.a3÷a2=a3?a2
B.
C.2a2+a2=3a4
D.(a﹣b)2=a2﹣b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知△ABC為直角三角形,分別以直角邊AC、BC為直徑作半圓AmCBnC,以AB為直徑作半圓ACB,記兩個月牙形陰影部分的面積之和為S1,△ABC的面積為S2,則S1S2的大小關系為(  )

A. S1>S2 B. S1<S2 C. S1=S2 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數(shù)相等.今年文學書和科普書的單價與去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)求出點M的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.

查看答案和解析>>

同步練習冊答案