【題目】如圖,已知P點是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C、D。
(1)求證:∠PCD=∠PDC;(2)求證:OP垂直平分線段CD
【答案】見解析
【解析】
(1)∠PCD=∠PDC.由于P點是∠AOB平分線上一點,根據(jù)角平分線的性質(zhì)可以推出PC=PD,然后利用等腰三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)已知條件首先容易證明Rt△POC≌Rt△POD,從而得到OC=OD,由(1)有PC=PD,利用線段的垂直平分線的判定即可證明結(jié)論.
(1)∠PCD=∠PDC.
理由:∵OP是∠AOB的平分線,
且PC⊥OA,PD⊥OB,
∴PC=PD,
∴∠PCD=∠PDC;
(2)OP是CD的垂直平分線.
理由:∵∠OCP=∠ODP=90°,
在Rt△POC和Rt△POD中,
,
∴Rt△POC≌Rt△POD(HL),
∴OC=OD,
由PC=PD,OC=OD,可知點O、P都是線段CD的垂直平分線上的點,
從而OP是線段CD的垂直平分線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2,求道路的寬.
(部分參考數(shù)據(jù):322=1024,522=2704,482=2304)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正方形紙片剪成四個小正方形,得到4個小正方形,稱為第一次操作;然后,將其中的一個正方形再剪成四個小正方形,共得到7個小正方形,稱為第二次操作;再將其中的一個正方形再剪成四個小正方形,共得到10個小正方形,稱為第三次操作;…根據(jù)以上操作,若操作300次,得到小正方形的個數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的4月23日是“世界讀書日”,今年其主題是“今天你讀了嗎”,某學校為了解八年紡學生的課外閱讀情況,隨機抽查部分學生,并對其4月份的課外閱讀量進行統(tǒng)計分析,繪制成如圖所示的統(tǒng)計圖數(shù)據(jù)不完整.
根據(jù)圖示信息,解答下列問題:
求被抽查學生的人數(shù)及課外閱讀量的眾數(shù);
在扇形統(tǒng)計圖中填寫和的值,并將條形統(tǒng)計圖補充完整;
若規(guī)定:4月份閱讀3本以上含3本課外書籍者為完成閱讀任務,據(jù)此估計該校八年級600名學生中,完成4月份課外閱讀任務的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍.小穎在小亮出發(fā)后50min才乘上纜車,纜車的平均速度為180m/min.設小亮出發(fā)xmin后行走的路程為ym,圖中的折線表示小亮在整個行走過程中y與x的函數(shù)關(guān)系.
(1)小亮行走的總路程是________m;他途中休息了________min.
(2)①當時,求y與x的函數(shù)關(guān)系式.
②當小穎到達纜車終點時,小亮離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.
(1)求證:∠D=2∠A;
(2)若HB=2,cosD=,請求出⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校餐廳計劃購買12張餐桌和一批餐椅,現(xiàn)從甲、乙兩商場了解到:同一型號的餐桌報價每張均為200元,餐椅報價每把均為50元.甲商場稱:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌椅均按報價的八五折銷售.那么多少餐椅,到甲商場購買更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,∠C=90°.
(1)如圖1,在邊BC上求作點P,使得點P到AB的距離等于點P到點C的距離.(尺規(guī)作圖,保留痕跡)
(2)如圖2,請利用沒有刻度的直尺和圓規(guī)在線段AB上找一點F,使得點F到AC的距離等于FB(注:不寫作法,保留痕跡,對圖中涉及到點用字母進行標注)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點C,過點A作AD⊥l,過點B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標系內(nèi),三角板的一個銳角的頂點與坐標原點O重合,另兩個頂點均落在第一象限內(nèi),已知點M的坐標為(1,3),求點N的坐標.
(3)拓展應用:如圖3,在平面直角坐標系內(nèi),已知直線y=﹣3x+3與y軸交于點P,與x軸交于點Q,將直線PQ繞P點沿逆時針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點R.求點R的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com