【題目】先化簡,再求值:(3﹣x)(3+x)+(x+1)2 , 其中x=2.

【答案】【解答】解:(3﹣x)(3+x)+(x+1)2
=9﹣x2+x2+2x+1
=2x+10,
當(dāng)x=2時(shí),原式=2×2+10=14.
【解析】先算乘法,再合并同類項(xiàng),最后代入求出即可. 分別計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等邊三角形ABCAQ=PQ,PR=PS,PRAB RPSACS,下列說法:①點(diǎn)P在∠BAC的平分線上;②AS=AR;QPAR; BRP≌△QSP其中結(jié)論正確的是 _______________.(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是真命題的是(

A. 成軸對(duì)稱的兩個(gè)圖形是全等圖形 B. 面積相等的兩個(gè)三角形全等

C. 三角形的三條高線相交于三角形內(nèi)一點(diǎn) D. 內(nèi)錯(cuò)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD、DE

(1)求證:DBC的中點(diǎn);

(2)若DE=3,BDAD=2,求⊙O的半徑;

(3)在(2)的條件下,求弦AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分如圖,一艘輪船以15海里/時(shí)的速度,由南向北航行,在A出測(cè)得小島P在北偏西向上,兩小時(shí)后,輪船在B處測(cè)得小島P在北偏西30°方向上在小島周圍18海里內(nèi)有暗礁,若輪船

不改變方向仍繼續(xù)向前航行,問:有無觸礁的危險(xiǎn)?說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,不正確的是(
A.8的立方根是2
B.﹣8的立方根是﹣2
C.0的立方根是0
D.125的立方根是±5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)在一次函數(shù)y=2x﹣3的圖象上的是(  )

A. ( 2,3) B. (2,1) C. (0,3) D. (3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A在第四象限,且它到x軸的距離等于2,到y(tǒng)軸的距離等于3,則點(diǎn)A的坐標(biāo)為( 。

A. (3,﹣2) B. (3,2) C. (2,﹣3) D. (2,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)四邊形的兩條對(duì)角線互相垂直且相等,則稱這個(gè)四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,ACBD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對(duì)角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息回答:

(1)矩形 “奇妙四邊形”(填“是”或“不是”);

(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;

(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OMBCM.請(qǐng)猜測(cè)OMAD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案