【題目】如圖,A、B兩點在正方形網(wǎng)格的格點上,每個方格都是邊長為1的正方形.點C也在格點上,且△ABC為等腰三角形,則符合條件的點C有( )個.
A.3B.5C.8D.10
【答案】C
【解析】
試題根據(jù)已知條件,可知按照點C所在的直線分兩種情況:①點C以點A為標(biāo)準(zhǔn),AB為底邊;②點C以點B為標(biāo)準(zhǔn),AB為等腰三角形的一條邊.
解:如圖所示:
①點C以點A為標(biāo)準(zhǔn),AB為底邊,符合點C的有0個;
②點C以點B為標(biāo)準(zhǔn),AB為底邊,符合點C的有0個;
③點C以點B為標(biāo)準(zhǔn),AB為等腰三角形的一條邊,符合點C的有C1、C3、C7,共3個;
④點C以點A為標(biāo)準(zhǔn),AB為等腰三角形的一條邊,符合點C的有C2、C4、C5,C6、C8共5個;
綜上所述,所有符合條件的點C共有8個.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生最喜愛的一項課外活動項目,隨機對全校部分學(xué)生進行了一次調(diào)査,調(diào)査結(jié)果有三種情況:A.文學(xué)藝術(shù);B.科技制作;C.體育運動.并將調(diào)查結(jié)果繪制成如下的不完整統(tǒng)計圖.
請根據(jù)相關(guān)信息,解答下列問題:
(1)本次活動共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中A所在扇形的圓心角的度數(shù);
(3)若該校共有1400名學(xué)生,試估計該校學(xué)生中最喜愛文學(xué)藝術(shù)的人數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖,點為線段外一動點,且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點在的延長線上時,線段取得最大值.
問題解決:如圖,點為線段外一動點,且,若,,連接,當(dāng)取得最大值時,的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點,分別在邊,上.
(1)如圖,若,以為邊作等邊,交于點,連接.
求證:①;
②平分.
(2)如圖,若,作,交的延長線于點,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2,求BC的長;
(2)如圖1,當(dāng)點G在AC上時,求證:BD=CG;
(3)如圖2,當(dāng)點G在AC的垂直平分線上時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG.
探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
應(yīng)用:如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD的延長線上.若AE=3ED, ∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:小騰遇到這樣一個問題:如圖1,在△ABC中,點D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長.
小騰發(fā)現(xiàn),過點C作CE∥AB,交AD的延長線于點E,通過構(gòu)造△ACE,經(jīng)過推理和計算能夠使問題得到解決(如圖 2).
請回答:∠ACE的度數(shù)為 ,AC的長為 .
參考小騰思考問題的方法,解決問題:
如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點E,AE=2,BE=2ED,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com