甲車在彎路做剎車試驗(yàn),收集到的數(shù)據(jù)如下表所示:
速度(千米/時) | 0 | 5 | 10 | 15 | 20 | 25 | … |
剎車距離(米) | 0 | 2 | 6 | … |
見解析
解析試題分析:(1)描出各點(diǎn)再按自變量的小到大的順序連線.有圖象知是拋物線,設(shè)函數(shù)解析式為y=ax2+bx+c用待定系數(shù)法找三點(diǎn)代入即可求得a,b,c.從而求得解析式(2)甲、乙兩車剎車距離分別為12米和10.5米,即函數(shù)值,分別代入y=x2+x和,解出速度(千米/時)與限速為40千米/時比較分析相撞原因.
試題解析:(1)圖象見圖
設(shè)函數(shù)解析式為y=ax2+bx+c,
把(0,0),(10,2),(20,6)代入,得,解得
∴y=x2+x.
(2)當(dāng)y=12時,即x2+x=12,解得x1=-40(舍去),x2=30,
當(dāng)y乙=10.5時,10.5=x,解得x=42.
因乙車行駛速度已超過限速40千米/時,速度太快,撞上了正常行駛的甲車.
考點(diǎn):1.待定系數(shù)法求函數(shù)解析式.2有函數(shù)值求自變量的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
有兩個直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點(diǎn)與點(diǎn)重合,F(xiàn)固定,將以每秒1個單位長度的速度在上向右平移,當(dāng)點(diǎn)與點(diǎn)重合時運(yùn)動停止。設(shè)平移時間為秒。
(1)當(dāng)為 秒時,邊恰好經(jīng)過點(diǎn);當(dāng)為 秒時,運(yùn)動停止;
(2)在平移過程中,設(shè)與重疊部分的面積為,請直接寫出與的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)當(dāng)停止運(yùn)動后,如圖2,為線段上一點(diǎn),若一動點(diǎn)從點(diǎn)出發(fā),先沿方向運(yùn)動,到達(dá)點(diǎn)后再沿斜坡方向運(yùn)動到達(dá)點(diǎn),若該動點(diǎn)在線段上運(yùn)動的速度是它在斜坡上運(yùn)動速度的2倍,試確定斜坡的坡度,使得該動點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)所用的時間最短。(要求,簡述確定點(diǎn)位置的方法,但不要求證明。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).
(1)請直接寫出點(diǎn)B,C的坐標(biāo):B( , ),C( , );
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C.此時,EF所在直線與(2)中的拋物線交于第一象限的點(diǎn)M.當(dāng)AE=2時,拋物線的對稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交與點(diǎn)A(1,0)與點(diǎn)B, 且過點(diǎn)C(0,3),
(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?,若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與直線交于點(diǎn).點(diǎn)是拋物線上,之間的一個動點(diǎn),過點(diǎn)分別作軸、軸的平行線與直線交于點(diǎn),.
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)的橫坐標(biāo)為2,求的長;
(3)以,為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求出之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;
(2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形AOCB在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù)(>)圖象上,△BOC的面積為.
(1)求反比例函數(shù)的關(guān)系式;
(2)若動點(diǎn)E從A開始沿AB向B以每秒1個單位的速度運(yùn)動,同時動點(diǎn)F 從B開始沿BC向C以每秒個單位的速度運(yùn)動,當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)隨之停止運(yùn)動.若運(yùn)動時間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動時間t取何值時,△BEF的面積最大?
(3)當(dāng)運(yùn)動時間為秒時,在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com