(本題10分)在平面直角坐標(biāo)系中,如圖1,將個(gè)邊長(zhǎng)為1的正方形并排組成矩形OABC,相鄰兩邊OAOC分別落在軸和軸的正半軸上, 設(shè)拋物
<0)過(guò)矩形頂點(diǎn)B、C.
(1)當(dāng)n=1時(shí),如果=-1,試求b的值;
(2)當(dāng)n=2時(shí),如圖2,在矩形OABC上方作一邊長(zhǎng)為1的正方形EFMN,使EF在線段CB上,如果MN兩點(diǎn)也在拋物線上,求出此時(shí)拋物線的解析式;
(3)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到軸的正半軸上,如果該拋物線同時(shí)經(jīng)過(guò)原點(diǎn)O.①試求當(dāng)n=3時(shí)a的值;
②直接寫出關(guān)于的關(guān)系式.

(本題10分)
(1)由題意可知,拋物線對(duì)稱軸為直線x=,
,得b= 1; ……2分
(2)設(shè)所求拋物線解析式為,
由對(duì)稱性可知拋物線經(jīng)過(guò)點(diǎn)B(2,1)和點(diǎn)M,2)
   解得    
∴所求拋物線解析式為;……4分
(3)①當(dāng)n=3時(shí),OC=1,BC=3,
設(shè)所求拋物線解析式為,
過(guò)CCDOB于點(diǎn)D,則RtOCDRtCBD,
,       
設(shè)OD=t,則CD=3t
,  
, ∴,
C,),  又B,0),                                               
∴把B 、C坐標(biāo)代入拋物線解析式,得
  解得:a=;   ……2分
.     ……2分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.

(1)實(shí)驗(yàn)操作: 在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過(guò)的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請(qǐng)?zhí)顚懴鄳?yīng)的解析式)

(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過(guò)次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長(zhǎng)不小于50,不超過(guò)56,求點(diǎn)Q的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.
(1)實(shí)驗(yàn)操作:在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過(guò)的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請(qǐng)?zhí)顚懴鄳?yīng)的解析式)
(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過(guò)次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長(zhǎng)不小于50,不超過(guò)56,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖北咸寧卷)數(shù)學(xué) 題型:解答題

(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.
(1)實(shí)驗(yàn)操作:在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過(guò)的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請(qǐng)?zhí)顚懴鄳?yīng)的解析式)
(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過(guò)次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長(zhǎng)不小于50,不超過(guò)56,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省瑞安市錦湖二中九年級(jí)下學(xué)期開學(xué)質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題10分)在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,-4)且經(jīng)過(guò)點(diǎn)B(3,0).
【小題1】(1)求該二次函數(shù)的解析式.
【小題2】(2)求直線y=-x-1與該二次函數(shù)圖象的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖北咸寧卷)數(shù)學(xué) 題型:解答題

(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.

(1)實(shí)驗(yàn)操作: 在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過(guò)的一種函數(shù)的圖象上,如:平移1次后在函數(shù)                的圖象上;平移2次后在函數(shù)               的圖象上……由此我們知道,平移次后在函數(shù)               的圖象上.(請(qǐng)?zhí)顚懴鄳?yīng)的解析式)

(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過(guò)次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長(zhǎng)不小于50,不超過(guò)56,求點(diǎn)Q的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案