已知點(diǎn)(3,1)是雙曲線y=
k
x
(k≠0)上一點(diǎn),則下列各點(diǎn)中在該圖象上的點(diǎn)是(  )
A、(
1
3
,-9)
B、(1,3)
C、(-1,3)
D、(6,-
1
2
分析:將(3,1)代入y=
k
x
即可求出k的值,再根據(jù)k=xy解答即可.
解答:解:∵點(diǎn)(3,1)是雙曲線y=
k
x
(k≠0)上一點(diǎn),
∴k=3×1=3,
四個(gè)選項(xiàng)中只有B:3×1=3符合.
故選:B.
點(diǎn)評(píng):本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,只要點(diǎn)在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們把既有外接圓又有內(nèi)切圓的四邊形稱(chēng)為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內(nèi)心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有
 
個(gè);
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問(wèn):這個(gè)四邊形是否是雙圓四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內(nèi)心重合于點(diǎn)O,試判定這個(gè)四邊形的形狀,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

愛(ài)動(dòng)腦筋的小明同學(xué)在買(mǎi)一雙新的運(yùn)動(dòng)鞋時(shí),發(fā)現(xiàn)了一些有趣現(xiàn)象,即鞋子的號(hào)碼與鞋子的長(zhǎng)(cm)之間存在著某種聯(lián)系,經(jīng)過(guò)收集數(shù)據(jù),得到下表:
鞋長(zhǎng)x(cm) 22 23 24 25 26
碼數(shù)y 34 36 38 40 42
請(qǐng)你代替小明解決下列問(wèn)題:
(1)根據(jù)表中數(shù)據(jù),在同一直角坐標(biāo)系中描出相應(yīng)的點(diǎn),你發(fā)現(xiàn)這些點(diǎn)在哪一種圖形上?
(2)猜想y與x之間滿足怎樣的函數(shù)關(guān)系式,并求出y與x之間的函數(shù)關(guān)系式,驗(yàn)證這些點(diǎn)的坐標(biāo)是否滿足函數(shù)關(guān)系式.
(3)已知姚明的鞋子穿52碼時(shí),則他穿的鞋長(zhǎng)是多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇省昆山市2011-2012學(xué)年八年級(jí)下學(xué)期期中教學(xué)質(zhì)量調(diào)研數(shù)學(xué)試題 題型:013

已知點(diǎn)M(-2,3)在雙由線y=上,則下列各點(diǎn)一定在該雙曲線上的是

[  ]

A.(3,-2)

B.(-2,-3)

C.(2,-3)

D.(-3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇省太倉(cāng)市2011-2012學(xué)年八年級(jí)下學(xué)期期中教學(xué)調(diào)研考試數(shù)學(xué)試題 題型:013

已知點(diǎn)M(-2,3)在雙由線y=上,則下列各點(diǎn)一定在該雙曲線上的是

[  ]

A.(3,-2)

B.(-2,-3)

C.(2,-3)

D.(-3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年安徽省合肥市第35中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

我們把既有外接圓又有內(nèi)切圓的四邊形稱(chēng)為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內(nèi)心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有______個(gè);
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問(wèn):這個(gè)四邊形是否是雙圓四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內(nèi)心重合于點(diǎn)O,試判定這個(gè)四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案