【題目】已知:如圖,四邊形ABCD是平行四邊形,延長BA至點(diǎn)E,使AE=AB,連接CE、DE、AC,CE與AD交于點(diǎn)F.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B.求證:四邊形ACDE是矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),矩形OABC的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(5,4),點(diǎn)P是射線BA上的一動點(diǎn),把矩形OABC沿著CP折疊,點(diǎn)B落在點(diǎn)D處.
(1)當(dāng)點(diǎn)C、D、A共線時,AD= ;
(2)如圖(2),當(dāng)點(diǎn)P與點(diǎn)A重合時,CD與x軸交于點(diǎn)E,過點(diǎn)E作EF⊥AC,交BC于點(diǎn)F,請判斷四邊形AECF的形狀,并說明理由;
(3)若點(diǎn)D正好落在x軸上,請直接寫出點(diǎn)P的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,P是BC邊上不同于B、C的一動點(diǎn),過P作PQ⊥AB,垂足為Q,連接AP.
(1)試說明不論點(diǎn)P在BC邊上何處時,都有△PBQ與△ABC相似;
(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;
(3)已知AC=3,BC=4,當(dāng)BP為何值時,△AQP面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:(1)(-16)-(-10)-(1);(2)(-8)×(-4)-80÷(-6)
(3)—||—|-×|—|—3|;(4)18+32÷(-2)2—(—4)2×5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上一動點(diǎn)(不與點(diǎn)重合),延長交射線于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當(dāng)的值為_______時,四邊形是矩形;
②當(dāng)的值為______時,四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生能更加了解溫州歷史,某校組織七年級師生共480人參觀溫州博物館.學(xué)校向租車公司租賃A、B兩種車型接送師生往返,若租用A型車3輛,B型車6輛,則空余15個座位;若租用A型車5輛,B型車4輛,則15人沒座位.
(1)求A、B兩種車型各有多少個座位;
(2)若A型車日租金為350元,B型車日租金為400元,且租車公司最多能提供7輛B型車,應(yīng)怎樣租車能使座位恰好坐滿且租金最少,并求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上.
(1)將△ABC繞C點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′.
(2)將△ABC向上平移1個單位,再向右平移5個單位得到△A″B″C″,請在圖中畫出△A″B″C″.
(3)若將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,A的對應(yīng)點(diǎn)A1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意一個三角形的三個內(nèi)角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點(diǎn)為O.
(1)若∠A=70°,求∠BOC的度數(shù);
(2)若∠A=α,求∠BOC的度數(shù);
(3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=α,求∠BOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com