如圖,已知在梯形ABCD中,AD∥BC,點E在邊BC上,連接DE,AC.
(1)填空:
CD
+
DE
=
CE
CE
BC
-
BA
=
AC
AC

(2)求作:
AB
+
AD
分析:(1)根據(jù)向量的加減運算法則求解即可;
(2)根據(jù)平面向量的平行四邊形法則求作即可.
解答:解:(1)
CD
+
DE
=
CE
BC
-
BA
=
BC
+
AB
=
AC


(2)過點D作DF∥AB,交BC于點F,連接AF,
AB
+
AD
=
AF
,向量
AF
即為所求.
故答案為:(1)
CE
;
AC
點評:本題考查平面向量的知識,解題關(guān)鍵是對向量運算法則及平行四邊形法則的熟練掌握與應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AC=6,則該梯形的高DE等于
 
.(結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,已知在梯形ABCD中,AD∥BC,AB=DC,對角線AC和BD相交于點O,E是BC邊上一個動點(E點不與B、C兩點重合),EF∥BD交AC于點F,EG∥AC交BD于點G.
(1)求證:四邊形EFOG的周長等于2 OB;
(2)請你將上述題目的條件“梯形ABCD中,AD∥BC,AB=DC”改為另一種四邊形,其他條件不變,使得結(jié)論“四邊形EFOG的周長等于2 OB”仍成立,并將改編后的題目畫出圖形,寫出已知、求證、不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,已知在梯形ABCD中,AD∥BC,AD+BC=CD,M是AB的中點,DM,CM是否分別是∠ADC和∠DCB的平分線?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23

求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案