【題目】如圖,以ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.

(1)求證:AC是O的切線:

(2)若BF=8,DF=,求O的半徑r.

【答案】解:(1)證明:連接OA、OD,

D為弧BE的中點,ODBC。

∴∠DOF=90°。∴∠D+OFD=90°。

AC=FC,OA=OD,

∴∠CAF=CFA,OAD=D。

∵∠CFA=OFD,∴∠OAD+CAF=90°。

OAAC。

OA為半徑,AC是O切線。

(2)當F在半徑OE上時,∵⊙O半徑是r,OD=r,OF=8﹣r。

在RtDOF中,r2+(8﹣r)2=(2,解得r=或r=(舍去);

當F在半徑OB上時,∵⊙O半徑是r,OD=r,OF=r﹣8。

在RtDOF中,r2+(r﹣8)2=(2,解得r=或r=(舍去)。

∴⊙O的半徑r為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.

1)甲、乙兩種款型的T恤衫各購進多少件?

2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知RtABC中,∠C=90°,∠A、B、C的對邊分別是a,b,c,設(shè)ABC的面積為S

1)填表:

三邊a,b,c

S

c+b-a

c-b+a

34,5

6

5,1213

20

8,15,17

24

2)①如果m=(c+b-a)(c-b+a),觀察上表猜想Sm之間的數(shù)量關(guān)系,并用等式表示出來.

②證明①中的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是(

A. 該班總?cè)藬?shù)為50B. 步行人數(shù)為30

C. 乘車人數(shù)是騎車人數(shù)的2.5D. 騎車人數(shù)占20%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當y1﹣y2=4時,求m的值;

(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點Px軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A2017=(  )

A. (31,51) B. (32,48) C. (33,47) D. (34,43)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,ADBCD,BE是三角形的角平分線,交ADF

1)若∠ABC=40° 求∠AFE的度數(shù).

2)若∠BAC是直角,請猜想:△AFE的形狀,并寫出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,DAB同側(cè),∠CAB=DBA,下列條件中不能判定ABD≌△BAC的是( 。

A. D=C B. BD=AC C. CAD=DBC D. AD=BC

查看答案和解析>>

同步練習冊答案