如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點(diǎn),與y軸交于點(diǎn)D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點(diǎn)C的坐標(biāo);
(3)求四邊形ACBD的面積?
分析:(1)由于二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點(diǎn),則可設(shè)交點(diǎn)式y(tǒng)=a(x-2)(x-6),然后把D點(diǎn)坐標(biāo)代入計算出a的值即可;
(2)把(1)中的解析式進(jìn)行配方得到頂點(diǎn)式y(tǒng)=
1
3
(x-4)2-
4
3
,然后根據(jù)二次函數(shù)的性質(zhì)寫出頂點(diǎn)坐標(biāo);
(3)利用S四邊形ACBD=S△ADB+S△ACB進(jìn)行計算.
解答:解:(1)設(shè)二次函數(shù)的解析式為y=a(x-2)(x-6),
把D(0,4)代入得a×(-2)×(-6)=4,解得a=
1
3
,
所以二次函數(shù)的解析式為y=
1
3
(x-2)(x-6)=
1
3
x2-
8
3
x+4;

(2)y=
1
3
(x-2)(x-6)=
1
3
(x2-8x)+4=
1
3
(x-4)2-
4
3

所以該拋物線的頂點(diǎn)C的坐標(biāo)為(4,-
4
3
);

(3)S四邊形ACBD=S△ADB+S△ACB
=
1
2
×4×4+
1
2
×4×
4
3

=
32
3
點(diǎn)評:本題考查了待定系數(shù)法求二次函數(shù)的解析式:二次函數(shù)的解析式可設(shè)為一般式、頂點(diǎn)式或交點(diǎn)式.也考查了二次函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點(diǎn),過點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時,求線段PC的最大值;
(3)當(dāng)m>0時,探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動點(diǎn),當(dāng)△KCM的周長最小時,點(diǎn)K的坐標(biāo)為
6
7
,0)
6
7
,0)

(3)連接AC,有兩動點(diǎn)P、Q同時從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點(diǎn)Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點(diǎn)相遇時,它們都停止運(yùn)動,設(shè)P、Q同時從點(diǎn)O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點(diǎn)A(0,-3),B(
3
3
),對稱軸為直線x=-
1
2
,點(diǎn)P是拋物線上的一動點(diǎn),過點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案