【題目】為積極響應(yīng)政府提出的綠色發(fā)展·低碳出行號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16 000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

【答案】1)男式單車2000/輛,女式單車1500/輛;(2)該社區(qū)共有三種購置方案,其中購置男式單車13輛、女式單車9輛時所需總費用最低,最低費用為41500元.

【解析】

1)設(shè)男式單車x/輛,女式單車y/輛,根據(jù)購買6輛男式單車與8輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000列方程組求解可得;
2)設(shè)購置女式單車m輛,則購置男式單車(m+5)輛,根據(jù)兩種單車至少需要22輛、購置兩種單車的費用不超過50000列不等式組求解,得出m的范圍,即可確定購置方案;再列出購置總費用關(guān)于m的函數(shù)解析式,利用一次函數(shù)性質(zhì)結(jié)合m的范圍可得其最值情況.

解:(1)設(shè)男式單車x/輛,女式單車y/輛,

根據(jù)題意,得,

解得:,

答:男式單車2000/輛,女式單車1500/輛;

2)設(shè)購置女式單車m輛,則購置男式單車(m+5)輛,根據(jù)題意,得:

,

解得:8≤m≤11,

m為整數(shù),

m的值可以是910、11,即該社區(qū)有三種購置方案;

設(shè)購置總費用為W,

W=2000m+5+1500m=3500m+10000,

35000,Wm的增大而增大,

∴當(dāng)m=9時,W取得最小值,最小值為41500,

答:該社區(qū)共有三種購置方案,其中購置男式單車13輛、女式單車9輛時所需總費用最低,最低費用為41500元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點A(0,0)、B(4,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第2017個等邊三角形的邊長等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點OACBD的交點,過點O的直線與BA的延長線,DC的延長線分別交于點EF.

(1)求證:△AOE≌△COF.

(2)連接EC,AF,則EFAC滿足什么數(shù)量關(guān)系時,四邊形AECF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為10的菱形ABCD中,對角線BD16,對角線ACBD相交于點G,點O是直線BD上的動點,OEABE,OFADF.

(1)求對角線AC的長及菱形ABCD的面積.

(2)如圖①,當(dāng)點O在對角線BD上運動時,OEOF的值是否發(fā)生變化?請說明理由.

(3)如圖②,當(dāng)點O在對角線BD的延長線上時,OEOF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列推理過程:如圖,EFAD,∠1=∠2,∠BAC80°.求∠AGD 的度數(shù).

EFAD (已知)

∴∠2

又∵∠1=∠2 (已知)

∴∠1=∠3(等量代換)

AB

∴∠BAC+ 180°(兩直線平行 ,同旁內(nèi)角互補)

∵∠BAC80°(已知)

∴∠AGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴大銷量,5月份商場對這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.

(1)求該童裝4月份的銷售單價;

(2)若4月份銷售這種童裝獲利8000元,6月全月商場進行“六一”兒童節(jié)促銷活動.童裝在4月售價的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AFBF,DECE,分別交于H、G.

求證:(1)四邊形AECF是平行四邊形。(2)EFGH互相平分。

查看答案和解析>>

同步練習(xí)冊答案