【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過(guò)點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.給出以下結(jié)論: ①DG=DF; ②四邊形EFDG是菱形; ③;

④當(dāng)時(shí),BE的長(zhǎng)為,其中正確的結(jié)論個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】試題解析:GEDF,

∴∠EGF=DFG

由翻折的性質(zhì)可知:GD=GE,DF=EFDGF=EGF,

∴∠DGF=DFG

GD=DF.故正確;

DG=GE=DF=EF

四邊形EFDG為菱形.故正確;

如圖1所示:連接DE,交AF于點(diǎn)O

四邊形EFDG為菱形,

GFDE,OG=OF=GF

∵∠DOF=ADF=90°,OFD=DFA,

∴△DOF∽△ADF

,即DF2=FOAF

FO=GF,DF=EG

EG2=GFAF.故正確;

如圖2所示:過(guò)點(diǎn)GGHDC,垂足為H

EG2=GFAF,AG=6EG=2,

20=FGFG+6),整理得:FG2+6FG-40=0

解得:FG=4FG=-10(舍去).

DF=GE=2,AF=10,

AD=

GHDC,ADDC

GHAD

∴△FGH∽△FAD

,即

GH=

BE=AD-GH=4-=,故正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ACB中,∠ACB=90゜,CD⊥AB于D.

(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CD、BC于E、F,求證:∠CEF=∠CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鈍角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,過(guò)點(diǎn)A的直線l交BC邊于點(diǎn)D.點(diǎn)E在直線l上,且BC=BE.

(1)若AB=AC,點(diǎn)E在AD延長(zhǎng)線上.
當(dāng)α=30°,點(diǎn)D恰好為BE中點(diǎn)時(shí),補(bǔ)全圖1,直接寫出∠BAE=°,
∠BEA=°;
(2)如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
(3)如圖3,若AB<AC,∠BEA的度數(shù)與(1)中②的結(jié)論相同,直接寫出∠BAE,α,β滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平移前后兩個(gè)圖形__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)求證:Rt△ADE與Rt△BEC全等;
(2)求證:△CDE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從正面看、從上面看、從左面看都是正方形的幾何體是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(a﹣2)2的結(jié)果是(
A.a2﹣4
B.a2﹣2a+4
C.a2﹣4a+4
D.a2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于A、B(A點(diǎn)在B點(diǎn)的左側(cè))與軸交于點(diǎn)C.

(1)如圖1,連接AC、BC,若△ABC的面積為3時(shí),求拋物線的解析式;

(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PC,若時(shí),求點(diǎn)P的橫坐標(biāo);

(3)如圖3,在(2)的條件下,點(diǎn)F在AP上,過(guò)點(diǎn)P作PH⊥軸于H點(diǎn),點(diǎn)K在PH的延長(zhǎng)線上,AK=KF,∠KAH=∠FKH,PF=,連接KB并延長(zhǎng)交拋物線于點(diǎn)Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x+2)(x1)=x2+mx2,則m_____

查看答案和解析>>

同步練習(xí)冊(cè)答案