【題目】如圖,在中,AB為的直徑,C為上一點(diǎn),P是的中點(diǎn),過(guò)點(diǎn)P作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)D.
(1)求證:DP是的切線;
(2)若AC=5,,求AP的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)AP=.
【解析】
(1)根據(jù)題意連接OP,直接利用切線的定理進(jìn)行分析證明即可;
(2)根據(jù)題意連接BC,交于OP于點(diǎn)G,利用三角函數(shù)和勾股定理以及矩形的性質(zhì)進(jìn)行綜合分析計(jì)算即可.
解:(1)證明:連接OP;
∵OP=OA;
∴∠1=∠2;
又∵P為D的中點(diǎn);
∴
∴∠1=∠3;
∴∠3=∠2;
∴OP∥DA;
∵∠D=90°;
∴∠OPD=90°;
又∵OP為O半徑;
∴DP為O的切線;
(2)連接BC,交于OP于點(diǎn)G;
∵AB是圓O的直徑;
∴∠ACB為直角;
∵
∴sin∠ABC=
AC=5,則AB=13,半徑為
由勾股定理的BC=,那么CG=6
又∵四邊形DCGP為矩形;
∴GP=DC=6.5-2.5=4
∴AD=5+4=9;
在Rt△ADP中,AP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,馬邊水務(wù)部門為加強(qiáng)馬邊河防汛工作,決定對(duì)某水電站水庫(kù)進(jìn)行加固.原大壩的橫斷面是梯形ABCD,如圖所示,已知迎水面AB的長(zhǎng)為10米,∠B=60°,背水面DC的長(zhǎng)度為10米,加固后大壩的橫斷面為梯形ABED.若CE的長(zhǎng)為4米.
(1)已知需加固的大壩長(zhǎng)為120米,求需要填方多少立方米;
(2)求新大壩背水面DE的坡度.(計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在直角三角形ABC中,∠ACB=90°,BC的垂直平分線交BC點(diǎn)D,交AB于點(diǎn)E,過(guò)點(diǎn)A作AF∥CE交直線DE于點(diǎn)F.
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B的大小滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)證明你的結(jié)論;
(3)四邊形ACEF有可能是矩形嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)與探索.
(1)根據(jù)小明的解答(圖1)分解因式(a-1)2-8(a-1)+7
(2)根據(jù)小麗的思考(圖2)解決問(wèn)題,說(shuō)明:代數(shù)式a2-12a+20的最小值為-16.
(3)求代數(shù)式-a2+12a-8的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,我們知道,若點(diǎn)將線段分成兩部分,且,則稱點(diǎn)為線段的黃金分割點(diǎn).類似的,我們把有一個(gè)內(nèi)角等于的等腰三角形稱為黃金三角形,如圖,是的直徑,點(diǎn)在上,,過(guò)點(diǎn)作直線分別交直線和于點(diǎn)、,連接,.
(1)求的度數(shù),并證明是黃金三角形;
(2)求證:點(diǎn)是線段的黃金分割點(diǎn);
(3)對(duì)于實(shí)數(shù):,如果滿足,則稱為,的黃金數(shù),為,的白銀數(shù).
①實(shí)數(shù),且為,1的黃金數(shù),為,1的白銀數(shù),求的值.
②實(shí)數(shù),,,分別為,t的黃金數(shù)和白銀數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DCE都是等邊三角形.
探究發(fā)現(xiàn)
(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請(qǐng)說(shuō)明理由.
拓展運(yùn)用
(2)若B、C、E三點(diǎn)不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長(zhǎng).
(3)若B、C、E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為1和2,求△ACD的面積及AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A的坐標(biāo)是A(x,y),從1、2、3這三個(gè)數(shù)中任取一個(gè)數(shù)作為x的值,再?gòu)挠嘞碌膬蓚(gè)數(shù)中任取一個(gè)數(shù)作為y的值.則點(diǎn)A落在直線y=﹣x+5與直線y=x及y軸所圍成的封閉區(qū)域內(nèi)(含邊界)的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果商計(jì)劃購(gòu)進(jìn)甲、乙兩種水果進(jìn)行銷售,經(jīng)了解,甲種水果的進(jìn)價(jià)比乙種水果的進(jìn)價(jià)每千克少4元,且用800元購(gòu)進(jìn)甲種水果的數(shù)量與用1000元購(gòu)進(jìn)乙種水果的數(shù)量相同.
(1)求甲、乙兩種水果的單價(jià)分別是多少元?
(2)該水果商根據(jù)該水果店平常的銷售情況確定,購(gòu)進(jìn)兩種水果共200千克,其中甲種水果的數(shù)量不超過(guò)乙種水果數(shù)量的3倍,且購(gòu)買資金不超過(guò)3420元,購(gòu)回后,水果商決定甲種水果的銷售價(jià)定為每千克20元,乙種水果的銷售價(jià)定為每千克25元,則水果商應(yīng)如何進(jìn)貨,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com