精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,在菱形ABCD中,點E、F分別為邊CD、AD的中點,連接AE,CF,求證:△ADE≌△CDF.

【答案】證明:∵四邊形ABCD是菱形,
∴AD=CD,
∵點E、F分別為邊CD、AD的中點,
∴AD=2DF,CD=2DE,
∴DE=DF,
在△ADE和△CDF中, ,
∴△ADE≌△CDF(SAS).
【解析】由菱形的性質得出AD=CD,由中點的定義證出DE=DF,由SAS證明△ADE≌△CDF即可.此題主要考查了全等三角形的判定、菱形的性質;熟練掌握菱形的性質,證明三角形全等是解決問題的關鍵.
【考點精析】根據題目的已知條件,利用菱形的性質的相關知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為
(  )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,F是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數為( 。

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們在學完“平移、軸對稱、旋轉”三種圖形的變化后,可以進行進一步研究,請根據示例圖形,完成下表.

圖形的變化

示例圖形

與對應線段有關的結論

與對應點有關的結論

平移

AA′=BB′
AA′∥BB′

軸對稱

旋轉

AB=A′B′;對應線段AB和A′B′所在的直線相交所成的角與旋轉角相等或互補.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把函數y=x的圖象上各點的縱坐標變?yōu)樵瓉淼?倍,橫坐標不變,得到函數y=2x的圖象;也可以把函數y=x的圖象上各點的橫坐標變?yōu)樵瓉淼? 倍,縱坐標不變,得到函數y=2x的圖象.
類似地,我們可以認識其他函數.

(1) 把函數y= 的圖象上各點的縱坐標變?yōu)樵瓉淼?/span>倍,橫坐標不變,得到函數y= 的圖象;也可以把函數y= 的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到函數y= 的圖象.
(2)已知下列變化:①向下平移2個單位長度;②向右平移1個單位長度;③向右平移 個單位長度;④縱坐標變?yōu)樵瓉淼?倍,橫坐標不變;⑤橫坐標變?yōu)樵瓉淼? 倍,縱坐標不變;⑥橫坐標變?yōu)樵瓉淼?倍,縱坐標不變.
(Ⅰ)函數y=x2的圖象上所有的點經過④→②→①,得到函數的圖象;
(Ⅱ)為了得到函數y=﹣ (x﹣1)2﹣2的圖象,可以把函數y=﹣x2的圖象上所有的點
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函數y= 的圖象可以經過怎樣的變化得到函數y=﹣ 的圖象?(寫出一種即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數關系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;
(2)求y1、y2與x的函數表達式;
(3)在圖中畫出y1與x的函數圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動﹣旋轉變換

(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉50°得到△A′B′C,連接BB′,求∠A′B′B的大小;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
①猜想:直線BB′與⊙A′的位置關系,并證明你的結論;
②連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結果用角α或角β的三角函數及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A,B是反比例函數y= (k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點.現將△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,則GH的長等于cm.

查看答案和解析>>

同步練習冊答案