如圖,在平面直角坐標系中,直線l1y=
4
3
x
與直線l2:y=kx+b相交于點A,點A的橫坐標為3,直線l2交y軸于點B,且|OA|=
1
2
|OB|.
(1)試求直線l2的函數(shù)表達式;
(2)若將直線l1沿著x軸向左平移3個單位,交y軸于點C,交直線l2于點D.試求△BCD的面積.
(1)根據(jù)題意,點A的橫坐標為3,
代入直線l1y=
4
3
x
中,
得點A的縱坐標為4,
即點A(3,4);
即OA=5,
又|OA|=
1
2
|OB|.
即OB=10,且點B位于y軸上,
即得B(0,-10);
將A、B兩點坐標代入直線l2中,得
4=3k+b;
-10=b;
解之得,k=
14
3
,b=-10;
即直線l2的解析式為y=
14
3
x-10;

(2)根據(jù)題意,
設(shè)平移后的直線l1的解析式為y=
4
3
x+m,代入(-3,0),
可得:-4+m=0,
解得:m=4,
平移后的直線l1的直線方程為y=
4
3
x+4
;
即點C的坐標為(0,4);
聯(lián)立線l2的直線方程,
解得x=
21
5
,y=
48
5

即點D(
21
5
,
48
5
);
又點B(0,-10),如圖所示:
故△BCD的面積S=
1
2
×
21
5
×14=
147
5
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,在x軸、y軸的正半軸上分別截取OA,OB,使OA=OB;再分別以點A,B為圓心,以大于
1
2
AB長為半徑作弧,兩弧交于點C.
(1)說明OC是∠AOB的平分線;
(2)求直線OC解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,直線l1y=-
3
2
x+3
與y軸交于點A,與直線l2交于x軸上同一點B,直線l2交y軸于點C,且點C與點A關(guān)于x軸對稱.
(1)求直線l2的解析式;
(2)若點P是直線l1上任意一點,求證:點P關(guān)于x軸的對稱點P′一定在直線l2上;
(3)設(shè)D(0,-1),平行于y軸的直線x=t分別交直線l1和l2于點E、F.是否存在t的值,使得以A、D、E、F為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

2006年的夏天,某地旱情嚴重.該地10號,15號的人日均用水量的變化情況如圖所示.若該地10號,15號的人均用水量分別為18千克和15千克,并一直按此趨勢直線下降.當人日均用水量低于10千克時,政府將向當?shù)鼐用袼退敲凑畱?yīng)開始送水的號數(shù)為( 。
A.23B.24C.25D.26

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲乙兩輛貨車分別從M、N兩地出發(fā),沿同一條公路相向而行,當?shù)竭_對方的出發(fā)地后立即裝卸貨物,5分鐘后再按原路以原速度返回各自的出發(fā)地,已知M、N兩地相距100千米,甲車比乙車早5分鐘出發(fā),甲車出發(fā)10分鐘時兩車都行駛了10千米,圖表示甲乙兩車離各自出發(fā)地的路程y(千米)與甲車出發(fā)時間x(分)的函數(shù)圖象.
(1)甲車從M地出發(fā)后,經(jīng)過多長時間甲乙兩車第一次相遇?
(2)乙車從M地出發(fā)后,經(jīng)過多長時間甲乙兩車與各自出發(fā)地的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

受國際金融危機影響,市自來水公司號召全市市民節(jié)約用水.決定采取月用水量分段收費辦法,某戶居民應(yīng)交水費y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.若該用戶本月用水21噸,則應(yīng)交水費( 。
A.52.5元B.45元C.42元D.37.8元

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知A(-1,0),E(0,-
2
2
),以點A為圓心,以AO長為半徑的圓交x軸于另一點B,過點B作BFAE交⊙A于點F,直線FE交x軸于點C.
(1)求證:直線FC是⊙A的切線;
(2)求點C的坐標及直線FC的解析式;
(3)有一個半徑與⊙A的半徑相等,且圓心在x軸上運動的⊙P.若⊙P與直線FC相交于M,N兩點,是否存在這樣的點P,使△PMN是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖(1),在同一直線,甲自A點開始追趕等速度前進的乙,且圖(2)表示兩人距離與所經(jīng)時間的線型關(guān)系.若乙的速率為每秒1.5公尺,則經(jīng)過40秒,甲自A點移動多少公尺(  )
A.60B.61.8C.67.2D.69

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場計劃投入一筆資金采購一批緊俏商品,經(jīng)市場調(diào)研發(fā)現(xiàn),如果本月初出售,可獲利10%,然后將本利再投資其他商品,到下月初又可獲利10%;如果下月初出售可獲利25%,但要支付倉儲費8000元.設(shè)商場投入資金x元,請你根據(jù)商場的資金情況,向商場提出合理化建議,說明何時出售獲利較多.

查看答案和解析>>

同步練習冊答案