【題目】已知四邊形中,,,,,.
()求的面積.
()若為中點,求線段的長.
【答案】()()
【解析】試題分析:
(1)如圖,過點C作CF⊥AD于點F,由此可得∠CFA=90°,由已知條件可得∠CDF=60°,從而可得∠DCF=30°,即可由CD的長度求得DF、CF及AF的長度,從而可得AD的長度,就可計算出△ADC的面積了;
(2)在Rt△ACF中由CF結(jié)合∠CAF=45°可求得AC的長,結(jié)合已知的AB=10、BC=8可的AC2+BC2=AB2,從而可證得∠ACB=90°,結(jié)合點E是AB的中點,即可得到CE=AB=5.
試題解析:
()過點作,交延長線于點,
∵,,
∴
,
在中,,
∴ ,
,
∴ ,
∴
.
()在中,∵ ,,
∴ ,
在中,∵
∴ △是直角三角形,
又∵ 為中點,
∴ .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、②、③、○n、…、M、N分別是⊙O的內(nèi)接正三角形ABC、正方形ABCD、正五邊形ABCDE、…、正n邊形ABCDE…的邊AB、BC上的點,且BM=CN,連接OM、ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中∠MON的度數(shù)是_________,圖③中∠MON的度數(shù)是___________;
(3)試探究∠MON的度數(shù)與正n邊形邊數(shù)n的關(guān)系(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,與軸交于點,點的坐標(biāo)為,連接.
()求證:是等邊三角形.
()點在線段的延長線上,連接,作的垂直平分線,垂足為點,并與軸交于點,分別連接、.
①如圖,若,直接寫出的度數(shù).
②若點在線段的延長線上運動(與點不重合),的度數(shù)是否變化?若變化,請說明理由;若不變,求出的度數(shù).
()在()的條件下,若點從點出發(fā)在的延長線上勻速運動,速度為每秒個單位長度,與交于點,設(shè)的面積為,的面積為,,運動時間為秒時.求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y1=x+m與y軸交于點A(0,6),直線l2:y2=kx+1分別與x軸交于點B(-2,0),與y軸交于點C.兩條直線相交于點D,連接AB.
(1)求兩直線交點D的坐標(biāo);
(2)求△ABD的面積;
(3)根據(jù)圖象直接寫出y1>y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點B,E,C,F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=21,EC=9,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義一種新運算:“※”,使得a※b=4ab
(1)求4※7的值;
(2)求x※x+2※x﹣2※4=0中x的值;
(3)不論x是什么數(shù),總有a※x=x,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現(xiàn)目標(biāo)?
(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費用為1.5元,政府補貼0.3元.企業(yè)將淡化水以3.2元/m3的價格出售,每年還需各項支出40萬元.按每年實際生產(chǎn)300天計算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一機器零件的三視圖.
(1)請寫出符合這個機器零件形狀的幾何體的名稱.
(2)若俯視圖中三角形為正三角形,那么請根據(jù)圖中所標(biāo)的尺寸,計算這個幾何體的表面積(單位:cm2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在研究相似問題時,甲、乙同學(xué)的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com