【題目】如圖,△ABC中,以BC為直徑的圓交AB于點(diǎn)D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=6,tan∠ABC=,tan∠AEC=,求圓的直徑.
【答案】(1)CA是圓的切線;(2)圓的直徑是10.
【解析】
試題分析:(1)根據(jù)圓周角定理BC得到∠BDC=90°,推出∠ACD+∠DCB=90°,即BC⊥CA,即可判斷CA是圓的切線;
(2)根據(jù)銳角三角函數(shù)的定義得到tan∠AEC=,tan∠ABC=,推出AC=EC,BC=AC,代入BC﹣EC=BE即可求出AC,進(jìn)一步求出BC即可.
試題解析:(1)證明:∵BC是直徑,
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圓的切線.
(2)解:在Rt△AEC中,tan∠AEC=,
∴,AC=EC,
在Rt△ABC中,tan∠ABC=,
∴,BC=AC,
∵BC﹣EC=BE,BE=6,
∴,
解得:,
∴BC==10,
答:圓的直徑是10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=-(x-m)2+1,當(dāng)x≤2時(shí),y隨x的增大而增大,則m的取值范圍是( )
A. m=2 B. m>2 C. m≥2 D. m≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AC是對(duì)角線,E、F分別在BC、AD邊上,將邊AB沿AE折疊,點(diǎn)B落在對(duì)角線AC上的G處,將邊CD沿CF折疊,點(diǎn)D落在對(duì)角線AC上的點(diǎn)H處 .
(1)求證:四邊形AECF是平行四邊形.
(2)若AB=6,AC=10,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,則∠E=______;
(2)請(qǐng)?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說(shuō)明理由.
(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長(zhǎng)FG交EP于點(diǎn)P,求∠P的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)A(-2,5)作x軸的垂線L,則直線L上的點(diǎn)的坐標(biāo)特點(diǎn)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(m+1)x|2m|﹣1 ,
①當(dāng)m何值時(shí),y是x的正比例函數(shù)?
②當(dāng)m何值時(shí),y是x的反比例函數(shù)?(上述兩個(gè)問(wèn)均要求寫出解析式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下可以用來(lái)證明命題“任何偶數(shù)都是4的倍數(shù)”是假命題的反例為( 。
A.3
B.4
C.8
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A. m3﹣m2=m B. m3﹣m2=m5 C. (m+n)2=m2+n2 D. (m3)2=m6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com