如圖.是一座人行天橋的示意圖,天橋的高是10米,坡面的傾斜角為45°,為了方便行人安全過天橋,市政部門決定降低坡度,使新坡面的傾斜角為30°.若新坡腳前需留2.5米的人行道,問離原坡腳10米的建筑物是否需要拆除?請說明理由.(參考數(shù)據:
2
≈1.414,
3
≈1.732)
如圖:
Rt△ABC中,∠BCA=45°,AB=10,
∴AC=AB=10.
同理可得:AD=10
3
≈17.32.
∴CD=AD-AC=7.32,
DE=CE-CD=10-7.32=2.68>2.5.
故原建筑物不用拆除.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知C,D是雙曲線y=
m
x
(x>0)上的兩點,直線CD分別交x軸,y軸于A,B兩點.設C(x1,y1,D(x2,y2),連接OC,OD(O是坐標原點),若∠BOC=∠AOD=α,且tanα=
1
3
,OC=
10

(1)求C,D的坐標和m的值;
(2)雙曲線存在一點P,使得△POC和△POD的面積相等,求點P的坐標;
(3)在(2)的條件下判斷點P是否為△OCD的重心.
(4)已知點Q(-2,0),問在直線AC上是否存在一點M使△MOQ的周長L取得最短?若存在,求出L的最小值并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

今年“五一“假期.某數(shù)學活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點.再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1040米,斜坡BC的長為400米,在C點測得B點的俯角為30°.已知A點海拔121米.C點海拔721米.
(1)求B點的海拔;
(2)求斜坡AB的坡度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,∠A=50°,c=3,求∠B和a(邊長保留兩個有效數(shù)字.下列數(shù)據供選擇:sin50°=0.7660,cos50°=0.6428,tan50°=1.1918,cot50°=0.8391)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,BC=9,AB=6
2
,∠ABC=45°.
(1)求△ABC的面積;
(2)求cos∠C的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某飛機于空中A處探測到目標C,此時飛行高度AC=1200米,從飛機上看地面控制點B的俯角α=20°(B、C在同一水平線上),求目標C到控制點B的距離(精確到1米).
(參考數(shù)據sin20°=0.34,cos20°=0.94,tan20°=0.36)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯子AB靠在墻上,梯子的底端A到墻根O的距離為2米,梯子的頂端B到地面的距離為7米.現(xiàn)將梯子的底端A向外移動到A′,使梯子的底端A′到墻根O的距離等于3米,同時梯子的頂端B下降到B′,那么BB′(  )
A.等于1米B.大于1米C.小于1米D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某型號飛機的機翼形狀如圖所示,ABCD,根據圖中數(shù)據計算AC、BD和CD的長度(精確到0.1米,
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在等腰△ABC中,AB=AC=13,BC=10,求底角∠B的三角函數(shù)值.

查看答案和解析>>

同步練習冊答案