【題目】如圖,某日的錢(qián)塘江觀(guān)潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時(shí)間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn)A(0,12),點(diǎn)B坐標(biāo)為(m,0),曲線(xiàn)BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫(huà).

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為0.48千米/分,小紅逐漸落后.問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

【答案】(1)0.4千米/分鐘,(2)5分鐘;(3)26分鐘,

【解析】試題分析:(1)由題意可知:經(jīng)過(guò)30分鐘后到達(dá)乙地,從而可知m=30,由于甲地到乙地是勻速運(yùn)動(dòng),所以利用路程除以時(shí)間即可求出速度;

(2)由于潮頭的速度為0.4千米/分鐘,所以到11:59時(shí),潮頭已前進(jìn)19×0.4=7.6千米,設(shè)小紅出發(fā)x分鐘,根據(jù)題意列出方程即可求出x的值,

(3)先求出s的解析式,根據(jù)潮水加速階段的關(guān)系式,求出潮頭的速度達(dá)到單車(chē)最高速度0.48千米/分鐘時(shí)所對(duì)應(yīng)的時(shí)間t,從而可知潮頭與乙地之間的距離s,設(shè)她離乙地的距離為s1,則s1與時(shí)間t的函數(shù)關(guān)系式為s1=0.48t+ht≥35),當(dāng)t=35時(shí),s1=s=,從而可求出h的值,最后潮頭與小紅相距1.8千米時(shí),即s-s1=1.8,從而可求出t的值,由于小紅與潮頭相遇后,按潮頭速度與潮頭并行到達(dá)乙地用時(shí)6分鐘,共需要時(shí)間為6+50-30=26分鐘,

試題解析:解:(1)由題意可知:m=30,∴B(30,0),潮頭從甲地到乙地的速度為:=0.4千米/分鐘;

(2)∵潮頭的速度為0.4千米/分鐘,11:59時(shí),潮頭已前進(jìn)19×0.4=7.6千米

設(shè)小紅出發(fā)x分鐘與潮頭相遇,∴0.4x+0.48x=12-7.6,∴x=5,∴小紅5分鐘與潮頭相遇

(3)把(30,0),C(55,15)代入s=t2+bt+c,解得:b=-c=-,∴s=t2-t-

v0=0.4,∴v=t-30)+

當(dāng)潮頭的速度達(dá)到單車(chē)最高速度0.48千米/分鐘,此時(shí)v=0.48,∴0.48=t-30)+,∴t=35.

當(dāng)t=35時(shí),s=t2-t-=,∴t=35分(12:15時(shí))開(kāi)始,潮頭快于小紅速度奔向丙地,小紅逐漸落后,當(dāng)小紅仍以0.48千米/分的速度勻速追趕潮頭.

設(shè)她離乙地的距離為s1,則s1與時(shí)間t的函數(shù)關(guān)系式為s1=0.48t+ht≥35).

當(dāng)t=35時(shí),s1=s=,代入可得:h=-,∴s1=t-

最后潮頭與小紅相距1.8千米時(shí),即s-s1=1.8,∴t2-t--t+=1.8

解得:t=50t=20(不符合題意,舍去),t=50.

小紅與潮頭相遇后,按潮頭速度與潮頭并行到達(dá)乙地用時(shí)6分鐘,共需要時(shí)間為6+50-30=26分鐘

故小紅與潮頭相遇到潮頭離她1.8千米外共需要26分鐘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1;

2)﹣23+(﹣3)×|4|﹣(﹣42+(﹣2

33x2﹣(2x22x+4x3x2

44a25a)﹣52a23a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,在平面直角坐標(biāo)系中如圖所示:完成下列問(wèn)題:

(1)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后的△A BC;點(diǎn)B1的坐標(biāo)為___;

(2)(1)的旋轉(zhuǎn)過(guò)程中,點(diǎn)B運(yùn)動(dòng)的路徑長(zhǎng)是___

(3)作出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△ABC;點(diǎn)C的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ACBAED都為等腰直角三角形,∠AED=ACB=90°,點(diǎn)DAB上,連CE,M、N分別為BD、CE的中點(diǎn).

1)求證:MNCE;

2)如圖2AEDA點(diǎn)逆時(shí)針旋轉(zhuǎn)30°,求證:CE=2MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán)A、B,分別被分成4等分和3等分,并在每份內(nèi)均標(biāo)有數(shù)字.小花為甲、乙兩人設(shè)計(jì)了一個(gè)游戲規(guī)則如下:同時(shí)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)A、B;兩個(gè)轉(zhuǎn)盤(pán)停止后,(如果指針恰好指在分格線(xiàn)上,那么重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),將兩個(gè)指針?biāo)阜輧?nèi)的兩個(gè)數(shù)字相乘,如果得到的積是偶數(shù),那么甲勝;如果得到的積是奇數(shù),則乙勝.但小強(qiáng)認(rèn)為這樣的規(guī)則是不公平的.

(1)請(qǐng)你用一種合適的方法(例如畫(huà)樹(shù)狀圖、列表)幫忙小強(qiáng)說(shuō)明理由;

(2)請(qǐng)你設(shè)計(jì)一個(gè)公平的規(guī)則,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(如圖1所示)在ABC中,∠ACB=90°A=30°,BC=4,沿斜邊AB的中線(xiàn)CD把這個(gè)三角形剪成AC1D1BC2D2兩個(gè)三角形(如圖2所示).將AC1D1沿直線(xiàn)D2B方向平移(點(diǎn)A,D1,D2,B始終在同一直線(xiàn)上),當(dāng)點(diǎn)D1于點(diǎn)B重合時(shí),平移停止.設(shè)平移距離D1D2x,AC1D1BC2D2的重疊部分面積為y,在yx的函數(shù)圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)y1mx的圖象與反比例函數(shù)y2(m為常數(shù),m≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2

(1)m的值;

(2)寫(xiě)出當(dāng)y1y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷(xiāo)售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠(chǎng)商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形中,,點(diǎn)分別是的中點(diǎn). 已知兩底之差是6,兩腰之和是12,則的周長(zhǎng)是____.

查看答案和解析>>

同步練習(xí)冊(cè)答案