(1)如圖,已知△ABC,請你作出AB邊上的高CD,AC邊上的中線BE,角平分線AF(不寫作法,保留痕跡)
(2)如圖,直線l表示一條公路,點A,點B表示兩個村莊.現(xiàn)要在公路上造一個車站,并使車站到兩個村莊A,B的距離之和最短,問車站建在何處?請在圖上標明地點,并說明理由.(要求尺規(guī)作圖,不寫作法)
分析:(1)延長BA,按照過直線外一點作直線的垂線步驟作CD⊥AB;作AC的垂直平分線交AC于E,連接BE即是AC邊上的中線;作∠A的平分線,按照作一個角的平分線的作法來做即可.
(2)畫出點A關于直線l的對稱點A′,連接A′B交l于點C,連接AC,由對稱的性質(zhì)可知AC=A′C,由兩點之間線段最短可知點C即為所求點.
解答:解:(1)所畫圖形如下所示:


(2)畫出點A關于直線l的對稱點A′,連接A′B交l于點C,連接AC,
∵A、A′關于直線l對稱,
∴AC=A′C,
∴AC+BC=A′B,
由兩點之間線段最短可知,線段A′B的長即為AC+BC的最小值,故C點即為所求點.
點評:(1)主要考查三角形角平分線、中線和高的作法;(2)熟知對稱的性質(zhì)及兩點之間線段最短的知識是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習冊答案