【題目】問題提出:
,分別是什么數(shù)時(shí),多項(xiàng)式和恒等?
閱讀理解:
所謂恒等式,就是指不論用任何數(shù)值來代替式中的變量,左、右兩邊的值都相等的等式.我們用符號“”來表示恒等,讀作“恒等于”.于是,上面的問題也可以表述為:已知,求待定系數(shù),.
問題解決:
(方法1—數(shù)值代入法)由恒等式的概念,我們每用一個(gè)數(shù)值來代替問題中的,即可得到一個(gè)關(guān)于與的方程.因此,要求出與的值,只需要用兩個(gè)不同的數(shù)值分別代替式中的,就可以得到一個(gè)關(guān)于與的二元一次方程組,解這個(gè)方程組,即可求得與.
解:分別用,代替式中的,得
解之,得
(方法2—系數(shù)比較法)
定理 如果,
那么,,,,.
根據(jù)這個(gè)定理,也可以這樣解:
解:由題設(shè),
比較對應(yīng)項(xiàng)的系數(shù),得,.
請回答下面的問題:
(1)已知多項(xiàng)式.求與的值;
(2)如果被除后余,求的值及商式.
【答案】(1)m=-1,n=2;(2),商式為.
【解析】
(1)對多項(xiàng)式右邊利用多項(xiàng)式乘多項(xiàng)式的法則展開,比較對應(yīng)項(xiàng)的系數(shù),得到方程組,解之即可;
(1)先根據(jù)題意可知商式的一次項(xiàng)系數(shù)為1,故可設(shè)商式為,再根據(jù)題意,比較對應(yīng)項(xiàng)的系數(shù),列出方程即可求出、的值.
(1)
,
比較對應(yīng)項(xiàng)的系數(shù),得,
解之,得;
(2)因?yàn)?/span>,所以商式的最高次項(xiàng)為一次,并且系數(shù)為.
∴設(shè)商式為,由題意,得:
,
比較對應(yīng)項(xiàng)的系數(shù),得,
解之,得
,商式為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)E、F分別為AD、DC上的動(dòng)點(diǎn),∠EBF=60°,點(diǎn)E從點(diǎn)A向點(diǎn)D運(yùn)動(dòng)的過程中,AE+CF的長度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,對角線AC和BD相交于點(diǎn)O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( )
A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=2,DE=1,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比特殊四邊形的學(xué)習(xí),我們可以定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)【探索體驗(yàn)】如圖1,已知在四邊形ABCD中,∠A=40°,∠B=100°,∠C=120°.求證:四邊形ABCD是“等對角四邊形”.
(2)如圖2,若AB=AD=a,CB=CD=b,且a≠b,那么四邊形ABCD是“等對角四邊形”嗎?試說明理由.
(3)【嘗試應(yīng)用】如圖3,在邊長為6的正方形木板ABEF上裁出“等對角四邊形”ABCD,若已經(jīng)確定DA=4m,∠DAB=60°,是否在正方形ABEF內(nèi)(包括邊上)存在一點(diǎn)C,使四邊形ABCD以∠DAB=∠BCD為等對角的四邊形的面積最大?若存在,試求出四邊形ABCD的最大面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若 = ,則S△EDH=13S△CFH .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券30元.
(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“父親節(jié)”的臨近,某商場決定開展“感恩父愛,回饋顧客”的促銷活動(dòng),對部分節(jié)日大禮包進(jìn)行打折銷售.其中款節(jié)日大禮包打折款節(jié)日大禮包打折.已知打折前,購買盒款節(jié)日大禮包和盒款節(jié)日大禮包需要元;打折后買盒款節(jié)日大禮包和盒款節(jié)日大禮包需要元.
求打折后兩款節(jié)日大禮包每盒分別為多少元?
打折期間,某公司計(jì)劃為員工采購盒節(jié)日大禮包,總費(fèi)用不超過元,則最多可以購買款節(jié)日大禮包多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請?jiān)趫D1中探索);
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請?jiān)趫D2中探索).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com