【題目】如圖,AD是△ABC的邊BC的中線,E是AD的中點,過點A作AF∥BC,交BE的延長線于點F,連接CF,BF交AC于G.
(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;
(2)求證:CG=2AG.
【答案】見解析
【解析】
(1)由菱形定義及AD是△ABC的中線知AD=DC=BD,從而得∠DBA=∠DAB、∠DAC=∠DCA,根據(jù)∠DBA+∠DAC+∠DBA+∠DCA=180°可得答案.
(2)作DM∥EG交AC于點M,分別證DM是△BCG的中位線和EG是△ADM的中位線得AG=GM=CM,從而得出答案.
(1)∵四邊形ADCF是菱形,AD是△ABC的中線,
∴AD=DC=BD,
∴∠DBA=∠DAB、∠DAC=∠DCA,
∵∠DBA+∠DAC+∠DBA+∠DCA=180°,
∴∠BAC=∠BAD+∠DAC=90°,
∴△ABC是直角三角形;
(2)過點D作DM∥EG交AC于點M,
∵AD是△ABC的邊BC的中線,
∴BD=DC,
∵DM∥EG,
∴DM是△BCG的中位線,
∴M是CG的中點,
∴CM=MG,
∵DM∥EG,E是AD的中點,
∴EG是△ADM的中位線,
∴G是AM的中點,
∴AG=MG,
∴CG=2AG.
科目:初中數(shù)學 來源: 題型:
【題目】為方便市民出行,減輕城市中心交通壓力,長沙市正在修建貫穿星城南北、東西的地鐵1、2號線.已知修建地鐵1號線24千米和2號線22千米共需投資265億元;若1號線每千米的平均造價比2號線每千米的平均造價多0.5億元.
(1)求1號線,2號線每千米的平均造價分別是多少億元?
(2)除1、2號線外,長沙市政府規(guī)劃到2018年還要再建91.8千米的地鐵線網(wǎng).據(jù)預算,這91.8千米地鐵線網(wǎng)每千米的平均造價是1號線每千米的平均造價的1.2倍,則還需投資多少億元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖1和2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點E、F分別在BC、CD上,∠EAF=45°.
(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉90°至△ADG,使AB與AD重合,則能證得
EF=BE+DF,請寫出推理過程;
②如圖2,若∠B、∠D都不是直角,則當∠B與∠D滿足數(shù)量關系時,仍有EF=BE+DF;
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2 ,點D、E均在邊BC上,且∠DAE=45°.若BD=1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF. 求證:四邊形BCFE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD內作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.
(1)如圖2,將△ADF繞點A順時針旋轉90°得到△ABG.求證:△AGE≌△AFE;
(2)如圖3,連接BD交AE于點M,交AF于點N.請?zhí)骄坎⒉孪耄壕段BM,MN,ND之間有什么數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)解方程:x2=2x.
(2)如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC向右平移至△A′B′C′的位置,使得四邊形ABB′A′為菱形,求B′C的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,點P是BC的中點,僅用無刻度的直尺按要求畫圖:
(1)在圖①中畫出AD的中點M;
(2)在圖②中畫出對角線AC的三等分點E,點F.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內,已知點A(0,6)、點B(8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設點P、Q移動的時間為t秒.
(1)求直線AB的解析式;
(2)當t為何值時,△APQ與△AOB相似?
(3)當t為何值時,△APQ的面積為 個平方單位?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com