【題目】等腰ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),均以1cm/秒的相同速度作直線運(yùn)動,已知P沿射線AB運(yùn)動,Q沿邊BC的延長線運(yùn)動,PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動時間為t,PCQ的面積為S.

(1)求出S關(guān)于t的函數(shù)關(guān)系式;

(2)當(dāng)點(diǎn)P運(yùn)動幾秒時,SPCQ=SABC?

(3)作PEAC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動時,線段DE的長度是否改變?證明你的結(jié)論.

【答案】(1);(2)點(diǎn)P運(yùn)動秒時,SPCQ=SABC;(3)當(dāng)點(diǎn)P、Q運(yùn)動時,線段DE的長度不會改變.

【解析】

試題分析:由題可以看出P沿AB向右運(yùn)動,Q沿BC向上運(yùn)動,且速度都為1cm/s,S=QC×PB,所以求出QC、PB與t的關(guān)系式就可得出S與t的關(guān)系,另外應(yīng)注意P點(diǎn)的運(yùn)動軌跡,它不僅在B點(diǎn)左側(cè)運(yùn)動,達(dá)到一定時間后會運(yùn)動到右側(cè),所以一些問題可能會有兩種可能出現(xiàn)的情況,這時我們應(yīng)分條回答.

解:(1)當(dāng)t<10秒時,P在線段AB上,此時CQ=t,PB=10﹣t

當(dāng)t>10秒時,P在線段AB得延長線上,此時CQ=t,PB=t﹣10

(4分)

(2)SABC=(5分)

當(dāng)t<10秒時,SPCQ=

整理得t2﹣10t+100=0無解(6分)

當(dāng)t>10秒時,SPCQ=

整理得t2﹣10t﹣100=0解得t=5±5(舍去負(fù)值)(7分)

當(dāng)點(diǎn)P運(yùn)動秒時,SPCQ=SABC(8分)

(3)當(dāng)點(diǎn)P、Q運(yùn)動時,線段DE的長度不會改變.

證明:過Q作QMAC,交直線AC于點(diǎn)M

易證APE≌△QCM

AE=PE=CM=QM=t,

四邊形PEQM是平行四邊形,且DE是對角線EM的一半.

EM=AC=10DE=5

當(dāng)點(diǎn)P、Q運(yùn)動時,線段DE的長度不會改變.

同理,當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時,DE=5

綜上所述,當(dāng)點(diǎn)P、Q運(yùn)動時,線段DE的長度不會改變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PEBC交AB于E,PFCD交AD于F,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“科學(xué)”號是我國目前最先進(jìn)的海洋科學(xué)綜合考察船,它在南海利用探測儀在海面下方探測到點(diǎn)C處有古代沉船.如圖,海面上兩探測點(diǎn)A,B相距1400米,探測線與海面的夾角分別是30°和60°.試確定古代沉船所在點(diǎn)C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程2xy=7變形,用含x的式子來表示y,則y____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:(1)a<O;(2)b2﹣4ac<0;(3)b>O;(4)a+b+c>0;(5)a﹣b+c>0.你認(rèn)為其中正確信息的個數(shù)有( )

A.2個 B.3個 C.4個 D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三個內(nèi)角互不相等的ABC,最小的內(nèi)角為∠A則在下列四個度數(shù)中,A最大可取( )

A. 30° B. 59° C. 60° D. 89°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(

A.2a2﹣a2=1 B.(a+b)2=a2+b2

C.(3b32=6b6 D.(﹣a)5÷(﹣a)3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在直角梯形ABCD中,ADBCC=90°,AB=AD=25,BC=32.連接BD,AEBD垂足為E.

(1)求證:ABE∽△DBC;

(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)x2﹣2x=﹣1;

(2)(x+3)2=2x(x+3).

查看答案和解析>>

同步練習(xí)冊答案