如圖,ABCD,BEFC是兩個全等的正方形,則tan(∠BAF+∠AFB)等于   
【答案】分析:根據(jù)三角形內(nèi)角與外角的關系求出∠BAF+∠AFB=∠FBE,再在△FBE中利用特殊角的三角函數(shù)值解答.
解答:解:∵∠FBE是△ABF的一個外角,
∴∠BAF+∠AFB=∠FBE,
∴tan(∠BAF+∠AFB)=tan∠FBE==1.
故答案為1.
點評:本題考查了三角函數(shù)的定義,利用三角形內(nèi)角與外角的關系,將tan(∠BAF+∠AFB)轉(zhuǎn)化tan∠FBE是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖矩形ABCD中,過A,B兩點的⊙O切CD于E,交BC于F,AH⊥BE于H,連接EF.
(1)求證:∠CEF=∠BAH;
(2)若BC=2CE=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,?ABCD對角線交于點O,點E是線段BO上的動點(與點B、O不重合),連接CE,過A點作AF∥CE交BD于點F,連接AE與CF.
(1)求證:四邊形AECF是平行四邊形;
(2)當BA=BC=2,∠ABC=60°時,?AECF能否成為正方形?若能,求出BE的長;若不能,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,?ABCD中,E是CD延長線上一點,BE與AD交于點F,DE=
12
CD.若△DEF的面積為1cm2,則
?ABCD的面積為
12
12
 cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•武進區(qū)模擬)如圖,?ABCD中,E是AD邊的中點,BE的延長線與CD的延長線相交于F.
求證:DC=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•莘縣二模)如圖,ABCD、CEFG是正方形,E在CD上且BE平分∠DBC,O是BD中點,直線BE、DG交于H.BD,AH交于M,連接OH,下列四個結論:
①BE⊥GD;②OH=
1
2
BG;③∠AHD=45°;④GD=
2
AM
,
其中正確的結論個數(shù)有( 。

查看答案和解析>>

同步練習冊答案