【題目】我們知道,實數(shù)與數(shù)軸上的點是一一對應的,任意一個實數(shù)在數(shù)軸上都能找到與之對應的點,比如我們可以在數(shù)軸上找到與數(shù)字2對應的點.
(1)在如圖所示的數(shù)軸上,畫出一個你喜歡的無理數(shù),并用點表示;
(2)(1)中所取點表示的數(shù)字是______,相反數(shù)是_____,絕對值是______,倒數(shù)是_____,其到點5的距離是______.
(3)取原點為,表示數(shù)字1的點為,將(1)中點向左平移2個單位長度,再取其關于點的對稱點,求的長.
【答案】(1)見解析;(2)(答案不唯一);(3)(答案不唯一).
【解析】
(1)先在數(shù)軸上以原點為起始點,以某個單位長度的長為邊長畫正方形,再連接正方形的對角線,以對角線為半徑,原點為圓心畫弧即可在數(shù)軸上得到一個無理數(shù);
(2)根據(jù)(1)中的作圖可得出無理數(shù)的值,然后根據(jù)相反數(shù),絕對值,倒數(shù)的概念以及點與點間的距離概念作答;
(3)先在數(shù)軸上作出點A平移后得到的點A′,點B,點C,再利用對稱性及數(shù)軸上兩點間的距離的定義,可求出CO的長.
解:(1)如圖所示:(答案不唯一)
(2)由(1)作圖可知,點表示的數(shù)字是,相反數(shù)是-,絕對值是,倒數(shù)是,其到點5的距離是5-,
故答案為:(答案不唯一)
(3)如圖,將點向左平移2個單位長度,得到點,
則點表示的數(shù)字為,
關于點的對稱點為,
點表示的數(shù)字為1,
∴A′B=BC=1-()=3-,
∴A′C=2A′B=6-,
∴CO=OA′+A′C=+6-=4-,
即CO的長為.(答案不唯一)
科目:初中數(shù)學 來源: 題型:
【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標系內,小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點為坐標原點,直線過點且與軸平行,直線過點且與軸平行,直線與相交于.點為直線上一點,反比例函數(shù)的圖象過點且與直線相交于點.
(1)若點與點重合,求的值;
(2)連接、、,若的面積為面積的2倍,求點的坐標;
(3)當時,在軸上是否存在一點 ,使是等腰直角三角形?如果存在,直接寫出點坐標:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市計劃進行一項城市美化工程,已知乙隊單獨完成此項工程比甲隊單獨完成此項工程多用10天,且甲隊單獨施工30天和乙隊單獨施工45天的工作量相同.
(1)甲、乙兩隊單獨完成此項工作各需多少天?
(2)已知甲隊每天的施工費用為8000元,乙隊每天的施工費用為6000元.為了縮短工期,指揮部決定該工程由甲、乙兩隊一起完成.則該工程施工費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=2,點E在BC邊上,連接DE,將△DEC沿DE翻折,得到△DEC',C'E交AD于點F,連接AC'.若點F為AD的中點,則AC′的長度為( 。
A.B.2C.2D.+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l1:y=x+5與反比例函數(shù)y=(k≠0,x>0)圖象交于點A(1,n);另一條直線l2:y=﹣2x+b與x軸交于點E,與y軸交于點B,與反比例函數(shù)y=(k≠0,x>0)圖象交于點C和點D(,m),連接OC、OD.
(1)求反比例函數(shù)解析式和點C的坐標;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠CAB=45°,BD⊥AC于點D,AE⊥BC于點E,DF⊥AB于點F,AE與DF交于點G,連接BG.
(1)求證:AG=BG;
(2)已知AG=5,BE=4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com