(2012•河北)如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3).反比例函數(shù)y=
mx
(x>0)的函數(shù)圖象經(jīng)過點(diǎn)D,點(diǎn)P是一次函數(shù)y=kx+3-3k(k≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)通過計(jì)算,說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點(diǎn)C;
(3)對(duì)于一次函數(shù)y=kx+3-3k(k≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍(不必寫出過程).
分析:(1)由B(3,1),C(3,3)得到BC⊥x軸,BC=2,根據(jù)平行四邊形的性質(zhì)得AD=BC=2,而A點(diǎn)坐標(biāo)為(1,0),可得到點(diǎn)D的坐標(biāo)為(1,2),然后把D(1,2)代入y=
m
x
即可得到m=2,從而可確定反比例函數(shù)的解析式;
(2)把x=3代入y=kx+3-3k(k≠0)得到y(tǒng)=3,即可說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點(diǎn)C;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為a,由于一次函數(shù)y=kx+3-3k(k≠0)過C點(diǎn),并且y隨x的增大而增大時(shí),則P點(diǎn)的縱坐標(biāo)要小于3,橫坐標(biāo)要小于3,當(dāng)縱坐標(biāo)小于3時(shí),由y=
2
x
得到a>
2
3
,于是得到a的取值范圍.
解答:解:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,
∵B(3,1),C(3,3),
∴BC⊥x軸,AD=BC=2,
而A點(diǎn)坐標(biāo)為(1,0),
∴點(diǎn)D的坐標(biāo)為(1,2).
∵反比例函數(shù)y=
m
x
(x>0)的函數(shù)圖象經(jīng)過點(diǎn)D(1,2),
∴2=
m
1
,

∴m=2,
∴反比例函數(shù)的解析式為y=
2
x
;

(2)當(dāng)x=3時(shí),y=kx+3-3k=3k+3-3k=3,
∴一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點(diǎn)C;

(3)設(shè)點(diǎn)P的橫坐標(biāo)為a,
則a的范圍為
2
3
<a<3.
點(diǎn)評(píng):本題考查了反比例函數(shù)綜合題:點(diǎn)在函數(shù)圖象上,則點(diǎn)的橫縱坐標(biāo)滿足圖象的解析式;利用平行四邊形的性質(zhì)確定點(diǎn)的坐標(biāo);掌握一次函數(shù)的增減性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,拋物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=1;③當(dāng)x=0時(shí),y2-y1=4;④2AB=3AC;
其中正確結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,CD是⊙O的直徑,AB是弦(不是直徑),AB⊥CD于點(diǎn)E,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形折疊,使點(diǎn)D、C分別落在點(diǎn)F、E處(點(diǎn)F、E都在AB所在的直線上),折痕為MN,則∠AMF等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,兩個(gè)正方形的面積分別為16,9,兩陰影部分的面積分別為a,b(a>b),則(a-b)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,AB、CD相交于點(diǎn)O,AC⊥CD于點(diǎn)C,若∠BOD=38°,則∠A=
52°
52°

查看答案和解析>>

同步練習(xí)冊(cè)答案