【題目】下列計(jì)算正確的是( )
A.(﹣x3)2=x5
B.(﹣3x2)2=6x4
C.(﹣x)﹣2=
D.x8÷x4=x2
【答案】C
【解析】解:A、(﹣x3)2=x6 , 故A錯誤;
B、(﹣3x2)2=9x4 , 故B錯誤;
C、(﹣x)﹣2= ,故C正確;
D、x8÷x4=x4 , 故D錯誤.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識,掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對同底數(shù)冪的除法的理解,了解同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)校圖書館上個月借閱情況,管理老師從學(xué)生對藝術(shù)、經(jīng)濟(jì)、科普及生活四類圖書借閱情況進(jìn)行了統(tǒng)計(jì),并繪制了下列不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息解答下列問題:
(1)上個月借閱圖書的學(xué)生有多少人?扇形統(tǒng)計(jì)圖中“藝術(shù)”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算“科普”類圖書應(yīng)添置多少冊合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)BF⊥CE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;
(2)AH⊥CE,垂足為H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,E為CD的中點(diǎn),H為BE上的一點(diǎn), ,連接CH并延長交AB于點(diǎn)G,連接GE并延長交AD的延長線于點(diǎn)F.
(1)求證: ;
(2)若∠CGF=90°,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E(與點(diǎn)B、C不重合)是BC邊上一點(diǎn),將線段EA繞點(diǎn)E順時針旋轉(zhuǎn)90°到EF,過點(diǎn)F作BC的垂線交BC的延長線于點(diǎn)G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF , 求BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形不是等腰三角形一個頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.
(1)判斷四邊形ABCD的形狀并加以證明;
(2)若AB=AD,以過點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.
①在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由);
②如果∠C=60°,那么 為何值時,B′P⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長為( )
A.12
B.15
C.12
D.15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com