一家圖文廣告公司制作的宣傳畫(huà)板頗受商家歡迎,這種畫(huà)板的厚度忽略不計(jì),形狀均為正方形,邊長(zhǎng)在10~30dm之間.每張畫(huà)板的成本價(jià)(單位:元)與它的面積(單位:dm2)成正比例,每張畫(huà)板的出售價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫(huà)板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與畫(huà)板的邊長(zhǎng)成正比例.在營(yíng)銷過(guò)程中得到了表格中的數(shù)據(jù).

畫(huà)板的邊長(zhǎng)(dm)
10
20
出售價(jià)(元/張)
160
220
(1)求一張畫(huà)板的出售價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
(2)已知出售一張邊長(zhǎng)為30dm的畫(huà)板,獲得的利潤(rùn)為130元(利潤(rùn)=出售價(jià)-成本價(jià)),
①求一張畫(huà)板的利潤(rùn)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
②當(dāng)邊長(zhǎng)為多少時(shí),出售一張畫(huà)板所獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

(1)y=6x+100;(2)W=-x2+6x+100,154.

解析試題分析:(1)每張畫(huà)板的成本價(jià)與它的面積成正比例,可設(shè)其解析式為y成本價(jià)=ax2,每張畫(huà)板的出售價(jià)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫(huà)板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與畫(huà)板的邊長(zhǎng)成正比例.可設(shè)y出售價(jià)=kx+b.把表中數(shù)據(jù)代入即可求出結(jié)論;
(2)由y利潤(rùn)=y出售價(jià)-y成本價(jià),可得出二次函數(shù),求出其最大值即可.
試題解析:(1)設(shè)正方形畫(huà)板的邊長(zhǎng)為xdm,出售價(jià)為每張y元,且y=kx+b(k≠0) (1分)
由表格中的數(shù)據(jù)可得,,解得
從而一張畫(huà)板的出售價(jià)y與邊長(zhǎng)x之間滿足函數(shù)關(guān)系式y(tǒng)=6x+100
(2)設(shè)每張畫(huà)板的成本價(jià)為ax2,利潤(rùn)W=6x+100-ax2
當(dāng)x=30時(shí),W=130,180+100-900a=130,得a=
一張畫(huà)板的利潤(rùn)W與邊長(zhǎng)x之間滿足函數(shù)關(guān)系式W=-x2+6x+100
由W=-16(x-18)2+154,知當(dāng)x=18時(shí),W有最大值,W最大=154
因此當(dāng)正方形畫(huà)板的邊長(zhǎng)為18dm時(shí),可獲最大利潤(rùn)154元.
考點(diǎn): 1.一次函數(shù)表達(dá)式;2.二次函數(shù)表達(dá)式;3.二次函數(shù)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

許多家庭以燃?xì)庾鳛闊鲲埖娜剂,?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問(wèn)題.某款燃?xì)庠钚D(zhuǎn)位置從0度到90度(如圖),燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚D(zhuǎn)的位置為0度,旋轉(zhuǎn)角度越大,燃?xì)饬髁吭酱,燃(xì)忾_(kāi)到最大時(shí),旋轉(zhuǎn)角度為90度.為測(cè)試燃?xì)庠钚D(zhuǎn)在不同位置上的燃?xì)庥昧,在相同條件下,選擇燃?xì)庠钚o的5個(gè)不同位置上分別燒開(kāi)一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_(kāi),故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:

旋鈕角度(度)
20
50
70
80
90
所用燃?xì)饬浚ㄉ?br />  73
 67
 83
 97
115
 
(1)請(qǐng)你從所學(xué)習(xí)過(guò)的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬縴升與旋鈕角度x度的變化規(guī)律?說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)當(dāng)旋鈕角度為多少時(shí),燒開(kāi)一壺水所用燃?xì)饬孔钌?最少是多少?br />(3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_(kāi)到最大,現(xiàn)采用最節(jié)省燃?xì)獾男o角度,每月平均能節(jié)約燃?xì)?0立方米,求該家庭以前每月的平均燃?xì)饬浚?br />

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)常用的表示方法有三種.
已知A、B兩地相距30千米,小王以40千米/時(shí)的速度騎摩托車從A地出發(fā)勻速前往B地參加活動(dòng).請(qǐng)選擇兩種方法來(lái)表示小王與B地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,6)和點(diǎn)B(4,n)

(1)求反比例函數(shù)的解析式和B點(diǎn)坐標(biāo)
(2)根據(jù)圖象回答,在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

B島位于自然環(huán)境優(yōu)美的西沙群島,盛產(chǎn)多種魚(yú)類.A港、B島、C港依次在同一條直線上,一漁船從A港出發(fā)經(jīng)由B島向C港航行,航行2小時(shí)時(shí)發(fā)現(xiàn)魚(yú)群,于是漁船勻速緩慢向B港方向前行打漁.在漁船出發(fā)一小時(shí)后,一艘快艇由C港出發(fā),經(jīng)由B島前往A港運(yùn)送物資.當(dāng)快艇到達(dá)B島時(shí)漁船恰好打漁結(jié)束,漁船又以原速經(jīng)由B島到達(dá)C港.下面是兩船距B港的距離y(海里)與漁船航行時(shí)間x(小時(shí))的函數(shù)圖象,結(jié)合圖象回答下列問(wèn)題:

(1)請(qǐng)直接寫(xiě)出m,a的值.
(2)求出線段MN的解析式,并寫(xiě)出自變量的取值范圍.
(3)從漁船出發(fā)后第幾小時(shí)兩船相距10海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是反比例函數(shù)圖象上的兩個(gè)點(diǎn).

(1)求m和k的值
(2)若點(diǎn)C(-1,0),連結(jié)AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知A(-4,m),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)當(dāng)取何值時(shí),反比例函數(shù)值大于一次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請(qǐng)根據(jù)圖中給的數(shù)據(jù)信息,解答下列問(wèn)題:

(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個(gè))之間的一次函數(shù)解析式;
(2)把這兩摞飯碗整齊地?cái)[成一摞時(shí),這摞飯碗的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

若一次函數(shù)的圖象與軸交點(diǎn)的縱坐標(biāo)為-2,且與兩坐標(biāo)軸圍成的直角三角形面積為1,試確定此一次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案