(2012•豐潤區(qū)二模)計算
1
x-y
-
1
x
的結(jié)果是(  )
分析:原式通分并利用同分母分式的減法法則計算,整理即可得到結(jié)果.
解答:解:原式=
x
x(x-y)
-
x-y
x(x-y)

=
x-x+y
x(x-y)

=
y
x(x-y)

故選D.
點評:此題考查了分式的加減法,分式的加減法的關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐潤區(qū)二模)?ABCD中,AC、BD是兩條對角線,現(xiàn)從以下四個關(guān)系式 ①AB=BC,②AC=BD,③AC⊥BD,④AB⊥BC中,任取一個作為條件,即可推出?ABCD是菱形的概率為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐潤區(qū)二模)如圖,已知:△ABC是⊙O的內(nèi)接三角形,∠B=30°,若AC=6,則圖中陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐潤區(qū)二模)如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立平面直角坐標(biāo)系.
(1)點A的坐標(biāo)為
(-2,-3)
(-2,-3)
,點C的坐標(biāo)為
(-3,-2)
(-3,-2)

(2)以原點O為位似中心,將△ABC放大,使變換后得到的△A1B1C1與△ABC對應(yīng)邊的比為2:1.請在網(wǎng)格內(nèi)畫出△A1B1C1,并寫出點A1的坐標(biāo):
(4,6)
(4,6)
;
(3)將△A1B1C1向左平移5個單位,請畫出平移后的△A2B2C2;若M為△ABC內(nèi)的一點,其坐標(biāo)為(a,b),則平移后點M的對應(yīng)點M1的坐標(biāo)為
(a-5,b)
(a-5,b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐潤區(qū)二模)如圖①,在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等.
(1)求∠EAF的度數(shù);
(2)在圖①中,連接BD分別交AE、AF于點M、N,將△ADN繞點A順時針旋轉(zhuǎn)90°至△ABH位置,得到圖②.求證:MN2=MB2+ND2;
(3)在圖②中,若BE=4,DF=6,BM=3
2
,求AG,MN的長.

查看答案和解析>>

同步練習(xí)冊答案