(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

【答案】分析:(1)可先求出A、B、E關于原點對稱的對稱點的坐標,然后用待定系數(shù)法求出拋物線的解析式.
(2)根據(jù)中心對稱圖形的性質不難得出OA=OD,OM=ON,因此四邊形AMDN是平行四邊形,那么其面積就是三角形ADN面積的2倍,可據(jù)此來求S,t的函數(shù)關系式.
(3)根據(jù)(2)得出的函數(shù)的性質和自變量的取值范圍即可得出S的最大值及對應的t的值.
(4)根據(jù)矩形的性質可知:當AD=MN時,平行四邊形AMDN是矩形,那么OD=ON,據(jù)此可求出t的值.
解答:解:(1)點A(-4,0),點B(-2,0),點E(0,8)關于原點的對稱點分別為D(4,0),C(2,0),F(xiàn)(0,-8).
設拋物線C2的解析式是y=ax2+bx+c(a≠0),
,
解得,
所以所求拋物線的解析式是y=-x2+6x-8.

(2)由(1)可計算得點M(-3,-1),N(3,1).
過點N作NH⊥AD,垂足為H.
當運動到時刻t時,AD=2OD=8-2t,NH=1+2t.
根據(jù)中心對稱的性質OA=OD,OM=ON,
所以四邊形MDNA是平行四邊形.
所以S=2S△ADN
所以,四邊形MDNA的面積S=(8-2t)(1+2t)=-4t2+14t+8.
因為運動至點A與點D重合為止,據(jù)題意可知0≤t<4.
所以所求關系式是S=-4t2+14t+8,t的取值范圍是0≤t<4.

(3)S=-4(t-2+,(0≤t<4).
所以時,S有最大值
提示:也可用頂點坐標公式來求.

(4)在運動過程中四邊形MDNA能形成矩形.
由(2)知四邊形MDNA是平行四邊形,對角線是AD,MN,
所以當AD=MN時四邊形MDNA是矩形,
所以OD=ON.所以OD2=ON2=OH2+NH2,
所以t2+4t-2=0.
解之得t1=-2,t2=--2(舍).
所以在運動過程中四邊形MDNA可以形成矩形,此時t=-2.
點評:本題以二次函數(shù)為背景,結合動態(tài)問題、存在性問題、最值問題,是一道較傳統(tǒng)的壓軸題,能力要求較高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:填空題

(2006•汾陽市)甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為米,設乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結論中正確的是( )

A.當y=1時,x的取值是
B.當y=-3時,x的近似值是0,2
C.當時,函數(shù)值y最大
D.當x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案