精英家教網 > 初中數學 > 題目詳情

【題目】如圖①,②,在平面直角坐標系xoy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦, , Px軸上的一動點,連結CP。

(1)求的度數;

(2)如圖①,當CP與⊙A相切時,求PO的長;

(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,是等腰三角形?

【答案】160°.(24.322+2

【解析】

試題(1OA=AC首先三角形OAC是個等腰三角形,因為∠AOC=60°,三角形AOC是個等邊三角形,因此∠OAC=60°;

2)如果PC與圓A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度數,有A點的坐標也就有了AC的長,可根據余弦函數求出PA的長,然后由PO=PA-OA得出OP的值.

3)本題分兩種情況:

O為頂點,OC,OQ為腰.那么可過Cx軸的垂線,交圓于Q,此時三角形OCQ就是此類情況所說的等腰三角形;那么此時PO可在直角三角形OCP中,根據∠COA的度數,和OC即半徑的長求出PO

Q為頂點,QC,QD為腰,那么可做OC的垂直平分線交圓于Q,則這條線必過圓心,如果設垂直平分線交OCD的話,可在直角三角形AOQ中根據∠QAE的度數和半徑的長求出Q的坐標;然后用待定系數法求出CQ所在直線的解析式,得出這條直線與x軸的交點,也就求出了PO的值.

試題解析:(1∵∠AOC=60°AO=AC,

∴△AOC是等邊三角形,

∴∠OAC=60°

2∵CPA相切,

∴∠ACP=90°,

∴∠APC=90°-∠OAC=30°;

∵A4,0),

∴AC=AO=4,

∴PA=2AC=8

∴PO=PA-OA=8-4=4

3過點CCP1⊥OB,垂足為P1,延長CP1⊙AQ1;

∵OA是半徑,

OC=OQ1,

∴OC=OQ1

∴△OCQ1是等腰三角形;

∵△AOC是等邊三角形,

∴P1O=OA=2;

AAD⊥OC,垂足為D,延長DA⊙AQ2,CQ2x軸交于P2

∵A是圓心,

∴DQ2OC的垂直平分線,

∴CQ2=OQ2,

∴△OCQ2是等腰三角形;

過點Q2Q2E⊥x軸于E,

Rt△AQ2E中,

∵∠Q2AE=∠OAD=∠OAC=30°

∴Q2E=AQ2=2,AE=2

Q2的坐標(4+2,-2);

Rt△COP1中,

∵P1O=2,∠AOC=60°,

∴CP12,

∴C點坐標(22);

設直線CQ2的關系式為y=kx+b,則

,解得

∴y=-x+2+2;

y=0時,x=2+2

∴P2O=2+2

考點: 1.切線的性質;2.等腰三角形的性質;3.等邊三角形的性質.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,菱形OABC中,點Ax軸上,頂點C的坐標為(1,),動點D、E分別在射線OC、OB上,則CE+DE+DB的最小值是____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知銳角△ABC內接于O,AD⊥BC.垂足為D.

(1)如圖1,,BD=DC,求∠B的度數.

(2)如圖2,BE⊥AC,垂足為E,BEAD于點F,過點BBG∥AD⊙O于點G,在AB邊上取一點H,使得AH=BG;

①連接CG,試探究∠ABC,∠ACG的數量關系,并給予證明.

②求證:△AFH是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=5BC=4,以A為圓心,3為半徑作圓.試判斷:

①點C與⊙A的位置關系;②點B與⊙A的位置關系;③AB中的D點與⊙A的位置關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】4張正面分別標有數字的不透明卡片,它們除數字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數字記為,另有一個被均勻分成4份的轉盤,上面分別標有數字,轉動轉盤,指針所指的數字記為(若指針指在分割線上則重新轉一次),則點在拋物線軸所圍成的區(qū)域內(不含邊界)的概率是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩幢大樓AB,CD之間的水平距離(BD)為20米,為測得兩幢大樓的高度,小王同學站在大樓AB的頂端A處測得大樓CD頂端C的仰角為60°,測得大樓CD的底部D的俯角為45°,試求大樓AB和CD的高度.(精確到1米)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在于點,于點,邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點M在第二象限,且經過點 A(1,0)和點 B(0,2).則

(1)a 的取值范圍是________

(2)△AMO的面積為△ABO面積的倍時,則a的值為________

查看答案和解析>>

同步練習冊答案