【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學們討論,解決下列問題:
(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?
(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質:“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形 “奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內接四邊形ABCD是“奇妙四邊形”作OM⊥BC于M.請猜測OM與AD的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1過點A(0,4)與點D(4,0),直線l2:y=x+1與x軸交于點C,兩直線l1,l2相交于點B.
(1)求直線l1的函數(shù)表達式;
(2)求點B的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q,設A、P兩點間的距離為x.
探究:
(1)當點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察到的結論;
(2)當點Q在邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)關系式,并寫出x的取值范圍;(3)當點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形EFGC面積分別為64和16.
(1)請寫出點A,E,F的坐標;
(2)求S△BDF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)為弘揚 “東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.
(1)請直接寫出第一位出場是女選手的概率;
(2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結果,并求出他們都是男選手的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王曉同學要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖,在平行四邊形ABCD中, .
求證:平行四邊形ABCD是 .
(1)在方框中填空,以補全已知和求證;
(2)按王曉的想法寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為3的正方形中,點是邊上的點,,;且交正方形外角的平分線于點,交邊于點.
(1)求證:AE=EP;
(2)在邊上是否存在點,使得四邊形是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com