如圖,四邊形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四邊形ABCD的周長.

【答案】分析:先證明四邊形ABCD是平行四邊形,再利用平行四邊形的性質(zhì)可求出四邊形ABCD的周長.
解答:解:解法一:∵AB∥CD
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC即得ABCD是平行四邊形,
∴AB=CD=3,BC=AD=6,
∴四邊形ABCD的周長=2×6+2×3=18;
解法二:連接AC,
∵AB∥CD,
∴∠BAC=∠DCA,
又∵∠B=∠D,AC=CA,
∴△ABC≌△CDA,
∴AB=CD=3,BC=AD=6,
∴四邊形ABCD的周長=2×6+2×3=18;
解法三:連接BD,
∵AB∥CD
∴∠ABD=∠CDB,
又∵∠ABC=∠CDA,
∴∠CBD=∠ADB,
∴AD∥BC即ABCD是平行四邊形,
∴AB=CD=3,BC=AD=6(5分)
∴四邊形ABCD的周長=2×6+2×3=18.
點(diǎn)評(píng):本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對(duì)應(yīng)著一種性質(zhì),在應(yīng)用時(shí)應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案