已知一次函數(shù)y=x+2的圖象分別交x軸,y軸于A、B兩點(diǎn),⊙O1過以O(shè)B為邊長(zhǎng)的正方形OBCD的四個(gè)頂點(diǎn),兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā)在四邊形ABCD上運(yùn)動(dòng),其中動(dòng)點(diǎn)P以每秒
2
個(gè)單位長(zhǎng)度的速度沿A→B→A運(yùn)動(dòng)后停止;動(dòng)點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度的速度沿A→O→D→C→B運(yùn)動(dòng),AO1交y軸于E點(diǎn),P、Q運(yùn)動(dòng)的時(shí)間為t(秒).
(1)直接寫出E點(diǎn)的坐標(biāo)和S△ABE的值;
(2)試探究點(diǎn)P、Q從開始運(yùn)動(dòng)到停止,直線PQ與⊙O1有哪幾種位置關(guān)系,并指出對(duì)應(yīng)的運(yùn)動(dòng)時(shí)間t的范圍;
(3)當(dāng)Q點(diǎn)運(yùn)動(dòng)在折線AD→DC上時(shí),是否存在某一時(shí)刻t使得精英家教網(wǎng)S△APQ:S△ABE=3:4?若存在,請(qǐng)確定t的值和直線PQ所對(duì)應(yīng)的函數(shù)解析式;若不存在,說明理由.
分析:(1)依題意容易知道O1的坐標(biāo),根據(jù)待定系數(shù)法可以確定直線AE的解析式,然后求出E的坐標(biāo),最后求出S△ABE;
(2)容易知道當(dāng)Q運(yùn)動(dòng)到O點(diǎn)時(shí)PQ與圓相切,此時(shí)t=1,所以可以確定其他位置的t的值;
(3)根據(jù)已知條件容易知道A(-2,0),B(0,2),OA=2,OB=2然后把S△APQ,S△APM,S四邊形PMDQ,S△ADQ分別用t表示,然后根據(jù)已知條件可以列出關(guān)于t的方程,解方程就可以確定t的值,從而確定直線PQ的函數(shù)解析式.
解答:解:(1)由題意知,A(-2,0),B(0,2),
∴OB=OD=2,
∴O1(1,1),
設(shè)AO1的直線的解析式為y=kx+b,則有0=-2k+b,1=k+b,
解得:b=
2
3
,k=
1
3
,
∴y=
1
3
x+
2
3
,
∴E(0,
2
3
),
∴BE=
4
3
,
S△ABE=
1
2
OA•BE=
4
3
;

(2)直線PQ與⊙O1有三種位置關(guān)系,分別是相離,相切,相交,
當(dāng)PQ與⊙O1相離,0<t<1;
當(dāng)PQ與⊙O1相切時(shí),t=1或t=4;
當(dāng)PQ與⊙O1相交時(shí),4>t>1;

(3)①Q(mào)點(diǎn)運(yùn)動(dòng)在折線AD上時(shí),當(dāng)點(diǎn)Q運(yùn)動(dòng)到原點(diǎn),即Q(0,0)時(shí),點(diǎn)P的坐標(biāo)為(-1,1),
S△APQ=1,且滿足S△APQ:S△ABE=3:4,此時(shí)t=1,直線PQ所對(duì)應(yīng)的函數(shù)解析式y(tǒng)=-x.
②Q點(diǎn)運(yùn)動(dòng)在折線DC上時(shí),P到了BA方向,根據(jù)已知得A(-2,0),B(0,2),
∴OA=2,OB=2,AB=2
2
,OD=OB=2,
O1(1,1),此時(shí)P,Q的位置如圖,過P作PM⊥AD于M,P運(yùn)動(dòng)的路程為
2
t,精英家教網(wǎng)
∴PB=
2
t-AB=
2
t-2
2
,
∴AP=AB-PB=4
2
-
2
t,而△APM為等腰直角三角形,
∴PM=AM=4-t,Q運(yùn)動(dòng)的路程為2t,
∴QD=2t-OA-OD=2t-4,
而S△APQ=S△APM+S四邊形PMDQ-S△ADQ,
S△APM+S四邊形PMDQ=
1
2
×PM×AM
+
1
2
(PM+QD)×MD
=t2-4t+8,
S△ADQ=
1
2
AD×QD
=4t-8,
∴S△APQ=t2-8t+16,若S△APQ:S△ABE=3:4,而S△ABE=
4
3
,
∴S△APQ=1,
∴1=t2-8t+16,
∴t=3或t=5,當(dāng)t=5時(shí),Q在BC上,不符合題意,舍去,
∴AM=1=PM,
∴OM=1,P(-1,1),
QD=2,∴Q在C點(diǎn)處,
∴Q(2,2),
設(shè)直線PQ的函數(shù)解析式為y=kx+b,
1=-k+b
2=2k+b
,
∴k=
1
3
,b=
4
3
,
∴y=
1
3
x+
4
3
點(diǎn)評(píng):此題很復(fù)雜,把幾何知識(shí)和代數(shù)知識(shí)緊緊的結(jié)合起來,還有圖形的變換,還有復(fù)雜的計(jì)算,多方面考查學(xué)生的能力,綜合性很強(qiáng),對(duì)學(xué)生的要求比較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知一次函數(shù)y=x+b的圖象經(jīng)過第一、三、四象限,則b的值可以是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)的圖象過點(diǎn)A(2,4)與B(-1,-5),求:
(1)這個(gè)一次函數(shù)的解析式.
(2)△AOB的面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知一次函數(shù)y1=kx+b的圖象經(jīng)過A(1,2)、B(-1,0)兩點(diǎn),y2=mx+n的圖象經(jīng)過A、C(3,0)兩點(diǎn),則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過(1,3)和(-2,0)兩點(diǎn),求關(guān)于x的方程
k
x+k
-
b
x-b
=0
的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•貴陽(yáng))已知一次函數(shù)y=2x+b,當(dāng)x=2時(shí),y=3,當(dāng)x=3時(shí)y=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案