精英家教網 > 初中數學 > 題目詳情
(2013•椒江區(qū)一模)請仔細閱讀下面兩則材料,然后解決問題:
材料1:小學時我們學過,任何一個假分數都可以化為一個整數與一個真分數的和的形式,同樣道理,任何一個分子次數不低于分母次數的分式都可以化為一個整式與另一個分式的和(或差)的形式,其中另一個分式的分子次數低于分母次數.
x2-2x-4
x-1
=
(x2-x)+(-x+1)+(-5)
x-1
=(x-1)-
5
x-1

如:對于式子2+
3
1+x2
,因為x2≥0,所以1+x2的最小值為1,所以
3
1+x2
的最大值為3,所以2+
3
1+x2
的最大值為5.根據上述材料,解決下列問題:問題1:把分式
4x2+8x+7
1
2
x2+x+1
 化為一個整式與另一個分式的和(或差)的形式,其中另一
4x2+8x+7
1
2
x2+x+1
個分式的分子次數低于分母次數.
問題2:當x的值變化時,求分式8-
2
(x+1)2+1
的最小值.
分析:問題1:根據分式的性質,將分子分母分別乘以4,再將分子轉化為x2+2x+2的倍數,然后約分計算;
問題2:根據問題1的結果,通過分母分析分式的最小值.
解答:問題1:解:原式=
8x2+16x+16-2
x2+2x+2
=8-
2
x2+2x+2
=8-
2
(x+1)2+1
;
問題2:解:∵(x+1)2≥0,
∴(x+1)2+1的最小值為1,
2
(x+1)2+1
的最大值為2,
8-
2
(x+1)2+1
的最小值為6,
4x2+8x+7
1
2
x2+x+1
的最小值為6.
點評:本題主要考查了分式的混合運算,適當轉化分子、分母是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•椒江區(qū)一模)我們把弧長等于半徑的扇形叫等邊扇形.如圖,扇形OAB是等邊扇形,設OA=R,下列結論中:①∠AOB=60°;②扇形的周長為3R;③扇形的面積為
1
2
R2
;④點A與半徑OB中點的連線垂直O(jiān)B;⑤設OA、OB的垂直平分線交于點P,以P為圓心,PA為半徑作圓,則該圓一定會經過扇形的弧AB的中點.其中正確的個數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•椒江區(qū)一模)計算(-ab-2-2的結果是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•椒江區(qū)一模)為迎接中考體育測試,小丁努力進行實心球訓練,成績不斷進步,連續(xù)五次測試成績分別為6分,7分,8分,9分,10分,那么數據6,7,8,9,10的方差為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•椒江區(qū)一模)我們把三角形內部的一個點到這個三角形三邊所在直線距離的最小值叫做這個點到這個三角形的距離.如圖1,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,如果PE≥PF≥PD,則稱PD的長度為點P到△ABC的距離.如圖2、圖3,在平面直角坐標系中,已知A(6,0),B(0,8),連接AB.
(1)若P在圖2中的坐標為(2,4),則P到OA的距離為
4
4
,P到OB的距離為
2
2
,P到AB的距離為
0.8
0.8
,所以P到△AOB的距離為
0.8
0.8

(2)若點Q是圖2中△AOB的內切圓圓心,求點Q到△AOB距離的最大值;
(3)若點R是圖3中△AOB內一點,且點R到△AOB的距離為1,請畫出所有滿足條件的點R所形成的封閉圖形,并求出這個封閉圖形的周長.(畫圖工具不限)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•椒江區(qū)一模)已知,在平面直角坐標系xOy中,點A的坐標為(0,2),點P(m,n)是拋物線y=
14
x2+1
上的一個動點.
(1)如圖1,過動點P作PB⊥x軸,垂足為B,連接PA,請通過測量或計算,比較PA與PB的大小關系:PA
=
=
PB(直接填寫“>”“<”或“=”,不需解題過程);
(2)請利用(1)的結論解決下列問題:
①如圖2,設C的坐標為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點P的坐標;如果不存在,簡單說明理由;
②如圖3,過動點P和原點O作直線交拋物線于另一點D,若AP=2AD,求直線OP的解析式.

查看答案和解析>>

同步練習冊答案