【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于A(﹣3,2),B(2,n).
(1)求反比例函數(shù)y= 的解析式;
(2)求一次函數(shù)y=ax+b的解析式;
(3)觀察圖象,直接寫出不等式ax+b< 的解集.

【答案】
(1)解:把A(﹣3,2)代入反比例解析式得:k=﹣6,

則反比例解析式為y=﹣ ;


(2)解:把B(2,n)代入反比例解析式得:n=﹣3,即B(2,﹣3),

把A(﹣3,2)與B(2,﹣3)代入y=ax+b中得: ,

解得:a=﹣1,b=﹣1,

則一次函數(shù)解析式為y=﹣x﹣1


(3)解:∵A(﹣3,2),B(2,﹣3),

∴結(jié)合圖象得:不等式ax+b< 的解集為﹣3<x<0或x>2


【解析】(1)把A坐標(biāo)代入反比例解析式求出k的值,確定出反比例解析式;(2)把B坐標(biāo)代入反比例解析式求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出a與b的值,即可確定出一次函數(shù)解析式;(3)根據(jù)A與B橫坐標(biāo),結(jié)合圖象確定出所求不等式的解集即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(3,-2)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m、n互為相反數(shù),x、y互為倒數(shù),則2015m+2015n-2016xy=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會,克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(80千瓦時(shí),1千瓦時(shí)俗稱1)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.

(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);

(2)6月份小張家預(yù)計(jì)用電130千瓦時(shí),請預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠某車間有48名工人,平均每人每天加工大齒輪10個(gè)或小齒輪15個(gè),已知1個(gè)大齒輪與3個(gè)小齒輪配成一套,那么怎么安排工人,才能使每天加工的大小齒輪剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校需購買一批課桌椅供學(xué)生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因?qū)W生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連接一個(gè)幾何圖形上任意兩點(diǎn)間的線段中,最長的線段稱為這個(gè)幾何圖形的直徑,根據(jù)此定義,圖(扇形、菱形、直角梯形、紅十字圖標(biāo))中“直徑”最小的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時(shí)間關(guān)系的圖像如圖所示.根據(jù)圖像解答下列問題:

(1)誰先出發(fā)?先出發(fā)多少時(shí)間?誰先到達(dá)終點(diǎn)?先到多少時(shí)間?

(2)分別求出甲、乙兩人的行駛速度;

(3)在什么時(shí)間段內(nèi),兩人均行駛在途中?(不包括起點(diǎn)和終點(diǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)兩位正整數(shù)m的個(gè)位數(shù)為8,則稱m好數(shù)”.

1)求證:對任意好數(shù)”mm2-64一定為20的倍數(shù);

2)若m=p2-q2,且p,q為正整數(shù),則稱數(shù)對(p,q)友好數(shù)對,規(guī)定: ,例如68=182-162,稱數(shù)對(18,16)為友好數(shù)對,則,求小于50好數(shù)中,所有友好數(shù)對H(m)的最大值.

查看答案和解析>>

同步練習(xí)冊答案