如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A、B的坐標分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的面積為(   )
A.4        B.8        C.16       D.
C
將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時即當y=4時,解得x=5,所以平移的距離為5-1=4,又知BC掃過的圖形為平行四邊形,高不變?yōu)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004159068424.gif" style="vertical-align:middle;" />,所以平行四邊形面積=底×高=4×4=16.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一
種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間
的函數(shù)關系如圖所示.
(1)有月租費的收費方式是   (填①或②),
月租費是   元;
(2)分別求出①、②兩種收費方式中y與自
變量x之間的函數(shù)關系式;
(3)請你根據(jù)用戶通訊時間的多少,給出
經(jīng)濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點,逆時針旋轉三角尺.
(1)當三角尺的一邊經(jīng)過C點時,此時三角尺的另一邊和AB邊交于點,求此時直線PM的解析式;
(2)繼續(xù)旋轉三角尺,三角尺的一邊與x軸交于點G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點F,若三角形GF的面積為4,求此時直線PM的解析式;
(3)當旋轉到三角尺的一邊經(jīng)過點B,另一直角邊的延長線與x軸交于點G,,求此時三角形GOF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,將直線向下平移4個單位長度后。所得直線的解析式為             .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(滿分8分)在直角坐標系xOy中,直線l過(1,3)和(3,1)兩點,且與x
軸,y軸分別交于A,B兩點.
(1)求直線l的函數(shù)關系式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)因長期干旱,甲水庫蓄水量降到了
正常水位的最低值.為灌溉需要,由乙水庫向甲水庫勻速
供水,20h后,甲水庫打開一個排灌閘為農(nóng)田勻速灌溉,
又經(jīng)過20h,甲水庫打開另一個排灌閘同時灌溉,再經(jīng)過
40h,乙水庫停止供水.甲水庫每個排泄閘的灌溉速度相
同,圖中的折線表示甲水庫蓄水量Q (萬m3) 與時間t (h) 之間的函數(shù)關系.
求:(1)線段BC的函數(shù)表達式;
(2)乙水庫供水速度和甲水庫一個排灌閘的灌溉速度;
(3)乙水庫停止供水后,經(jīng)過多長時間甲水庫蓄水量又降到了正常水位的最低值?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•泰安)已知一次函數(shù)y=mx+n﹣2的圖象如圖所示,則m、n的取值范圍是(  )
A.m>0,n<2B.m>0,n>2
C.m<0,n<2D.m<0,n>2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

重慶市墊江縣具有2000多年的牡丹種植歷史.每年3月下旬至4月上旬,主要分布在該縣太平鎮(zhèn)、澄溪鎮(zhèn)明月山一帶的牡丹迎春怒放,美不勝收.由于牡丹之根———丹皮是重要中藥材,目前已種植有60多個品種2萬余畝牡丹的墊江,因此成為我國丹皮出口基地,獲得“丹皮之鄉(xiāng)”的美譽。為了提高農(nóng)戶收入,該縣決定在現(xiàn)有基礎上開荒種植牡丹并實行政府補貼,規(guī)定每新種植一畝牡丹一次性補貼農(nóng)戶若干元,經(jīng)調查,種植畝數(shù)(畝)與補貼數(shù)額(元)之間成一次函數(shù)關系,且補貼與種植情況如下表:
補貼數(shù)額(元)
     10
      20
    ……
種植畝數(shù)(畝)
     160
      240
……
隨著補貼數(shù)額的不斷增大,種植規(guī)模也不斷增加,但每畝牡丹的收益(元)會相應降低,且該縣補貼政策實施前每畝牡丹的收益為3000元,而每補貼10元(補貼數(shù)為10元的整數(shù)倍),每畝牡丹的收益會相應減少30元.
(1)分別求出政府補貼政策實施后,種植畝數(shù)(畝)、每畝牡丹的收益(元)與政府補貼數(shù)額(元)之間的函數(shù)關系式;
(2)要使全縣新種植的牡丹總收益(元)最大,又要從政府的角度出發(fā),政府應將每畝補貼數(shù)額定為多少元?并求出總收益的最大值和此時種植畝數(shù);(總收益=每畝收益×畝數(shù))
(3)在(2)問中取得最大總收益的情況下,為了發(fā)展旅游業(yè),需占用其中不超過50畝的新種牡丹園,利用其樹間空地種植剛由國際牡丹園培育出的“黑桃皇后”.已知引進該新品種平均每畝的費用為530元,此外還要購置其它設備,這項費用(元)等于種植面積(畝)的平方的25倍.這樣混種了“黑桃皇后”的這部分土地比原來種植單一品種牡丹時每畝的平均收益增加了2000元,這部分混種土地在扣除所有費用后總收益為85000元.求混種牡丹的土地有多少畝?(結果精確到個位)(參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)(k為常數(shù)且)的圖象如圖所示,則使y>0成立的x的取值范圍為     .

查看答案和解析>>

同步練習冊答案