【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D , 交AB于點(diǎn)E , 且BE=BF , 添加一個條件,仍不能證明四邊形BECF為正方形的是( ).
A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF
【答案】D
【解析】∵EF垂直平分BC , ∴BE=EC , BF=CF , ∵BF=BE , ∴BE=EC=CF=BF , ∴四邊形BECF是菱形;當(dāng)BC=AC時,∵∠ACB=90°,則∠A=45,∴∠EBC=45°,∴∠EBF=2∠EBC=2×45°=90°,∴菱形BECF是正方形,故選項A不符合題意;當(dāng)CF⊥BF時,利用正方形的判定得出,菱形BECF是正方形,故選項B不符合題意;當(dāng)BD=DF時,利用正方形的判定得出,菱形BECF是正方形,故選項C不符合題意;當(dāng)AC=BF時,無法得出菱形BECF是正方形,故選項D符合題意.
【考點(diǎn)精析】關(guān)于本題考查的線段垂直平分線的性質(zhì)和正方形的判定方法,需要了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等;先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用科學(xué)記算器計算銳角α的三角函數(shù)值時,不能直接計算出來的三角函數(shù)值是( 。
A.cotα
B.tanα
C.cosα
D.sinα
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適宜采用普查方式的是( )
A. 了解一批燈泡的使用壽命B. 了解外地游客對天柱山的印象
C. 了解本班同學(xué)早餐是否有喝牛奶的習(xí)慣D. 了解我國初中學(xué)生的視力情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,OA⊥OB,∠BOC=50°,且∠AOD:∠COD=4:7.畫出∠BOC的角平分線OE,并求出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作
法和證明);
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)調(diào)查“每人每天的用水量”這一問題時,收集到80個數(shù)據(jù),最大數(shù)據(jù)是70升,最小數(shù)據(jù)是42升,若取組距為4,則應(yīng)分為_________組繪制頻數(shù)分布表.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com