(2004•泰安)如圖,在△ABC中,AB=AC,點(diǎn)E、D、F在邊BC上,且∠BAD=∠CAD.BE=CF,則圖中全等的三角形共有( 。
分析:根據(jù)等腰三角形三線合一的性質(zhì)可得AD⊥BC,然后根據(jù)對(duì)稱(chēng)性找出全等的三角形即可得解.
解答:解:∵AB=AC,∠BAD=∠CAD,
∴AD⊥BC,
又∵BE=CF,
∴圖形關(guān)于AD成軸對(duì)稱(chēng),
∴全等的三角形有△ABE≌△ACF,△ABD≌△ACD,△ABF≌△ACE,△AED≌△AFD共4對(duì).
故選C.
點(diǎn)評(píng):本題考查了全等三角形的判定,等腰三角形的性質(zhì),注意找出全等三角形時(shí)要按照一定的順序,做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2004•泰安)如圖,點(diǎn)C、D是以AB為直徑的半圓的三等分點(diǎn),弧CD的長(zhǎng)為
1
3
π
,則圖中陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2004•泰安)如圖,AB是⊙O的弦,P是AB上一點(diǎn),AB=10cm,PA:PB=2:3,OP=5cm,則⊙O的半徑等于
7cm
7cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2004•泰安)如圖,在△ABC中,AB=3,BC=2
2
,∠B=45°,在BC邊上有一動(dòng)點(diǎn)M,過(guò)M作MN∥AC,交AB于點(diǎn)N,連接AM,設(shè)CM=x(0<x<2
2
 ),△AMN的面積為S.
(1)求S與x之間的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)M,使△AMN的面積等于4?若存在,求出CM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2004•泰安)如圖,Rt△AOB的兩直角邊OA、OB的長(zhǎng)分別是1和3,將△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,至△DOC的位置.
(1)求過(guò)C、B、A三點(diǎn)的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點(diǎn)是M,判定△MDC的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案