【題目】如圖,△ABC為等邊三角形,P為BC上一點,△APQ為等邊三角形,PQ與AC相交于點M,則下列結論中正確的是( ) ①AB∥CQ;②∠ACQ=60°;③AP2=AMAC;④若BP=PC,則PQ⊥AC.
A.①②
B.①③
C.①②③
D.①②③④
【答案】D
【解析】證明:如圖,
∵△ABC和△APQ是等邊三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°﹣∠PAC,
在△ABP和△ACQ中,
,
∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=60°=∠BAC,故②正確,
∴AB∥CQ,故①正確,
∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,
∴△APM∽△ACP,
∴ = ,
∴AP2=ACAM,故③正確,
∵BP=PC,
∴∠BAP=30°,
∴∠PAC=30°,
∵∠APM=60°,
∴∠AMP=90°,
∴PQ⊥AC,故④正確.
故選:D.
【考點精析】解答此題的關鍵在于理解等邊三角形的性質(zhì)的相關知識,掌握等邊三角形的三個角都相等并且每個角都是60°,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形 ABCD 中,AB=8,AD=10,點 E 為 BC 上一點,將△ABE 沿 AE 折疊,使點 B 落在長方形內(nèi)點 F 處, 且 DF=6,求 BE 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,過點O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個單位到△DEF的位置.
(1)求BC邊上的高;
(2)若AB=10,
①求線段DF的長;
②連結AE,當△ABE時等腰三角形時,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AD平分∠BAC,AD=4,CD=2,AC=2,則△ABD的面積是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一長方形花園用來種植菊花和郁金香,其余作為休息區(qū);
(1)求種植菊花和郁金香的面積;
(2)當m,m時,種植菊花和郁金香的面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接五月份全縣中考九年級體育測試,小強每天堅持引體向上鍛煉,他記錄了某一周每天做引體向上的個數(shù),如下表:
其中有三天的個數(shù)被墨汁覆蓋了,但小強已經(jīng)計算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關注.我市某空氣質(zhì)量監(jiān)測站點檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了天的空氣質(zhì)量情況;
(2)請將條形統(tǒng)計圖補充完整;;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質(zhì)量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com